The representational–hierarchical view of pattern separation: Not just hippocampus, not just space, not just memory?

Pattern separation (PS) has been defined as a process of reducing overlap between similar input patterns to minimize interference amongst stored representations. The present article describes this putative PS process from the "representational-hierarchical" perspective (R-H), which uses a hierarchical continuum instead of a cognitive modular processing framework to describe the organization of the ventral visual perirhinal-hippocampal processing stream. Instead of trying to map psychological constructs onto anatomical modules in the brain, the R-H model suggests that the function of brain regions depends upon what representations they contain. We begin by discussing a main principle of the R-H framework, the resolution of "ambiguity" of lower level representations via the formation of unique conjunctive representations in higher level areas, and how this process is remarkably similar to definitions of PS. Work from several species and experimental approaches suggest that this principle of resolution of ambiguity via conjunctive representations has considerable explanatory power, leads to wide possibilities for experimentation, and also supports some perhaps surprising conclusions.

[1]  Carl R Olson,et al.  Responses to Compound Objects in Monkey Inferotemporal Cortex: The Whole Is Equal to the Sum of the Discrete Parts , 2010, The Journal of Neuroscience.

[2]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[3]  Andy C. H. Lee,et al.  Differentiating the Roles of the Hippocampus and Perirhinal Cortex in Processes beyond Long-Term Declarative Memory: A Double Dissociation in Dementia , 2006, The Journal of Neuroscience.

[4]  L. Saksida,et al.  False recognition in a mouse model of Alzheimer’s disease: rescue with sensory restriction and memantine , 2012, Brain : a journal of neurology.

[5]  Andy C. H. Lee,et al.  Abnormal Categorization and Perceptual Learning in Patients with Hippocampal Damage , 2006, The Journal of Neuroscience.

[6]  H. Eichenbaum,et al.  Memory, amnesia, and the hippocampal system , 1993 .

[7]  E. Rolls Limbic systems for emotion and for memory, but no single limbic system , 2015, Cortex.

[8]  Paul E. Gilbert,et al.  Recognition memory for complex visual discriminations is influenced by stimulus interference in rodents with perirhinal cortex damage. , 2003, Learning & memory.

[9]  Rosemary A. Cowell,et al.  Why Does Brain Damage Impair Memory? A Connectionist Model of Object Recognition Memory in Perirhinal Cortex , 2006, The Journal of Neuroscience.

[10]  James L. McClelland,et al.  Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade‐off , 1994, Hippocampus.

[11]  Inah Lee,et al.  Dentate gyrus is necessary for disambiguating similar object-place representations. , 2010, Learning & memory.

[12]  E. Warrington,et al.  Further analysis of the prior learning effect in amnesic patients , 1978, Neuropsychologia.

[13]  L. Saksida,et al.  Impairments in visual discrimination after perirhinal cortex lesions: testing ‘declarative’ vs. ‘perceptual‐mnemonic’ views of perirhinal cortex function , 2003, The European journal of neuroscience.

[14]  M. Behrmann,et al.  Impact of learning on representation of parts and wholes in monkey inferotemporal cortex , 2002, Nature Neuroscience.

[15]  Rosemary A. Cowell,et al.  Components of recognition memory: Dissociable cognitive processes or just differences in representational complexity? , 2010, Hippocampus.

[16]  René Hen,et al.  NR2B-Dependent Plasticity of Adult-Born Granule Cells is Necessary for Context Discrimination , 2012, The Journal of Neuroscience.

[17]  J. Ramos Essential role of the perirhinal cortex in complex tactual discrimination tasks in rats. , 2014, Cerebral cortex.

[18]  C. Stark,et al.  Pattern separation in the hippocampus , 2011, Trends in Neurosciences.

[19]  Andy C. H. Lee,et al.  Going beyond LTM in the MTL: A synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception , 2010, Neuropsychologia.

[20]  S. Tonegawa,et al.  Young Dentate Granule Cells Mediate Pattern Separation, whereas Old Granule Cells Facilitate Pattern Completion , 2012, Cell.

[21]  E. Maguire,et al.  Constructing, Perceiving, and Maintaining Scenes: Hippocampal Activity and Connectivity , 2014, Cerebral cortex.

[22]  L Weiskran,et al.  AMNESIC SYNDROME - CONSOLIDATION OR RETRIEVAL , 1970 .

[23]  Brianne A. Kent,et al.  BDNF in the Dentate Gyrus Is Required for Consolidation of “Pattern-Separated” Memories , 2013, Cell reports.

[24]  David Gaffan,et al.  Against memory systems. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  E. Rolls,et al.  Information Representation , Processing , and Storage in the Brain : Analysis at the Single Neuron Level , 2007 .

[26]  M. Chun,et al.  Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage , 1999, Nature Neuroscience.

[27]  D. Gaffan,et al.  Perirhinal Cortex Ablation Impairs Visual Object Identification , 1998, The Journal of Neuroscience.

[28]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[29]  Michael R. Hunsaker,et al.  The role of the dorsal and ventral hippocampus in olfactory working memory , 2011, Neurobiology of Learning and Memory.

[30]  Alison R. Preston,et al.  The medial temporal lobe and memory , 2007 .

[31]  Rosemary A. Cowell,et al.  Multiple Cognitive Abilities from a Single Cortical Algorithm , 2012, Journal of Cognitive Neuroscience.

[32]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  R. Wise,et al.  Sounds do-able: auditory–motor transformations and the posterior temporal plane , 2005, Trends in Neurosciences.

[34]  C. Stark,et al.  Pattern Separation in the Human Hippocampal CA3 and Dentate Gyrus , 2008, Science.

[35]  Rosemary A. Cowell,et al.  Journal of Experimental Psychology : General Recognition Memory Impairments Caused by False Recognition of Novel Objects , 2013 .

[36]  R. O’Reilly,et al.  Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. , 2003, Psychological review.

[37]  Andy C. H. Lee,et al.  Activating the medial temporal lobe during oddity judgment for faces and scenes. , 2008, Cerebral cortex.

[38]  Zachariah M. Reagh,et al.  Spatial discrimination deficits as a function of mnemonic interference in aged adults with and without memory impairment , 2014, Hippocampus.

[39]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  Andy C. H. Lee,et al.  Intact Memory for Irrelevant Information Impairs Perception in Amnesia , 2012, Neuron.

[41]  L. Cermak,et al.  Alcoholic Korsakoff's Syndrome: An Information-Processing Approach to Amnesia , 1980 .

[42]  Andy C. H. Lee,et al.  Behavioral / Systems / Cognitive Functional Specialization in the Human Medial Temporal Lobe , 2005 .

[43]  T. Bussey,et al.  Perceptual–mnemonic functions of the perirhinal cortex , 1999, Trends in Cognitive Sciences.

[44]  Shauna M. Stark,et al.  Contributions of human hippocampal subfields to spatial and temporal pattern separation , 2014, Hippocampus.

[45]  Michael R. Hunsaker,et al.  The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty , 2008, Hippocampus.

[46]  E. Rolls,et al.  Computational analysis of the role of the hippocampus in memory , 1994, Hippocampus.

[47]  D. Plaut Double dissociation without modularity: evidence from connectionist neuropsychology. , 1995, Journal of clinical and experimental neuropsychology.

[48]  T. Bussey,et al.  Transient Inactivation of Perirhinal Cortex Disrupts Encoding, Retrieval, and Consolidation of Object Recognition Memory , 2005, The Journal of Neuroscience.

[49]  Michael R. Hunsaker,et al.  The operation of pattern separation and pattern completion processes associated with different attributes or domains of memory , 2013, Neuroscience & Biobehavioral Reviews.

[50]  L. Saksida,et al.  Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. , 2007, Annual review of neuroscience.

[51]  Russell A. Epstein,et al.  Perceptual deficits in amnesia: challenging the medial temporal lobe ‘mnemonic’ view , 2005, Neuropsychologia.

[52]  L. Saksida,et al.  Perirhinal cortex resolves feature ambiguity in complex visual discriminations , 2002, The European journal of neuroscience.

[53]  Lisa M Saksida,et al.  Brain-derived neurotrophic factor interacts with adult-born immature cells in the dentate gyrus during consolidation of overlapping memories , 2014, Hippocampus.

[54]  Andy C. H. Lee,et al.  Differing profiles of face and scene discrimination deficits in semantic dementia and Alzheimer's disease , 2007, Neuropsychologia.

[55]  Paul E. Gilbert,et al.  Dissociating hippocampal subregions: A double dissociation between dentate gyrus and CA1 , 2001, Hippocampus.

[56]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[57]  E. Rolls Pattern separation, completion, and categorisation in the hippocampus and neocortex , 2016, Neurobiology of Learning and Memory.

[58]  E. Rolls Functions of neuronal networks in the hippocampus and neocortex in memory , 1989 .

[59]  C. Koch,et al.  Sparse but not ‘Grandmother-cell’ coding in the medial temporal lobe , 2008, Trends in Cognitive Sciences.

[60]  L. Saksida,et al.  The organization of visual object representations: a connectionist model of effects of lesions in perirhinal cortex , 2002, The European journal of neuroscience.

[61]  S. Tronel,et al.  Adult‐born neurons are necessary for extended contextual discrimination , 2012, Hippocampus.

[62]  S. J. Martin,et al.  Reversible neural inactivation reveals hippocampal participation in several memory processes , 1999, Nature Neuroscience.

[63]  Morgan D. Barense,et al.  Conjunctive Coding of Complex Object Features. , 2016, Cerebral cortex.

[64]  James J Knierim,et al.  Conflicts between Local and Global Spatial Frameworks Dissociate Neural Representations of the Lateral and Medial Entorhinal Cortex , 2013, The Journal of Neuroscience.

[65]  M. Kopelman Disorders of memory. , 2002, Brain : a journal of neurology.

[66]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[67]  C. Barnes,et al.  Pattern separation deficits may contribute to age-associated recognition impairments. , 2010, Behavioral neuroscience.

[68]  Rosemary A. Cowell,et al.  Heightened susceptibility to interference in an animal model of amnesia: Impairment in encoding, storage, retrieval – or all three? , 2010, Neuropsychologia.

[69]  C. Gross Single neuron studies of inferior temporal cortex , 2008, Neuropsychologia.

[70]  A. Fenton,et al.  Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation , 2011, Nature.

[71]  Lynn Nadel,et al.  Journal of Experimental Psychology : General The Hippocampus : Part of an Interactive Posterior Representational System Spanning Perceptual and Memorial Systems , 2013 .

[72]  L. Saksida,et al.  The representational–hierarchical view of amnesia: Translation from animal to human , 2010, Neuropsychologia.

[73]  L. Saksida,et al.  Object memory and perception in the medial temporal lobe: an alternative approach , 2005, Current Opinion in Neurobiology.

[74]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[75]  Andy C. H. Lee,et al.  Human Medial Temporal Lobe Damage Can Disrupt the Perception of Single Objects , 2010, The Journal of Neuroscience.

[76]  L. Saksida,et al.  No effect of hippocampal lesions on perirhinal cortex‐dependent feature‐ambiguous visual discriminations , 2006, Hippocampus.

[77]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[78]  Andy C. H. Lee,et al.  Specialization in the medial temporal lobe for processing of objects and scenes , 2005, Hippocampus.

[79]  J. Rauschecker,et al.  Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing , 2009, Nature Neuroscience.

[80]  James J. Knierim,et al.  CA3 Retrieves Coherent Representations from Degraded Input: Direct Evidence for CA3 Pattern Completion and Dentate Gyrus Pattern Separation , 2014, Neuron.

[81]  Lisa M. Saksida,et al.  Running enhances spatial pattern separation in mice , 2010, Proceedings of the National Academy of Sciences.

[82]  James J. Knierim,et al.  Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics , 2016, Neurobiology of Learning and Memory.

[83]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[84]  R. Kesner,et al.  Role of the dentate gyrus in mediating object-spatial configuration recognition , 2015, Neurobiology of Learning and Memory.

[85]  Rosemary A. Cowell,et al.  Functional Dissociations within the Ventral Object Processing Pathway: Cognitive Modules or a Hierarchical Continuum? , 2010, Journal of Cognitive Neuroscience.

[86]  Paul E. Gilbert,et al.  The Amygdala but Not the Hippocampus Is Involved in Pattern Separation Based on Reward Value , 2002, Neurobiology of Learning and Memory.

[87]  L. Saksida,et al.  A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation , 2009, Science.

[88]  Rosemary A. Cowell,et al.  Perirhinal cortex resolves feature ambiguity in configural object recognition and perceptual oddity tasks. , 2007, Learning & memory.

[89]  L. Saksida,et al.  Impairment and facilitation of transverse patterning after lesions of the perirhinal cortex and hippocampus, respectively. , 2006, Cerebral cortex.

[90]  Rosemary A. Cowell,et al.  Paradoxical False Memory for Objects After Brain Damage , 2010, Science.

[91]  K. Norman How hippocampus and cortex contribute to recognition memory: Revisiting the complementary learning systems model , 2010, Hippocampus.

[92]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[93]  E. Rolls,et al.  A computational theory of hippocampal function, and empirical tests of the theory , 2006, Progress in Neurobiology.

[94]  L. Saksida,et al.  Scopolamine infused into perirhinal cortex improves object recognition memory by blocking the acquisition of interfering object information. , 2007, Learning & memory.