Non-steroidal anti-inflammatory drugs and molecular carcinogenesis of colorectal carcinomas

[1]  H. Clevers,et al.  Linking Colorectal Cancer to Wnt Signaling , 2000, Cell.

[2]  P. Vielh,et al.  Sulindac causes regression of rectal polyps in familial adenomatous polyposis. , 1991, Gastroenterology.

[3]  H. Clevers,et al.  Survivin and molecular pathogenesis of colorectal cancer , 2003, The Lancet.

[4]  K. Kinzler,et al.  Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC−/− Colon Carcinoma , 1997, Science.

[5]  S. Piantadosi,et al.  Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. , 1993, The New England journal of medicine.

[6]  H. Clevers,et al.  Mutations in the APC tumour suppressor gene cause chromosomal instability , 2001, Nature Cell Biology.

[7]  Bruno C. Hancock,et al.  Suppression of Intestinal Polyposis in Apc Δ716 Knockout Mice by Inhibition of Cyclooxygenase 2 (COX-2) , 1996, Cell.

[8]  Hans Clevers,et al.  The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. , 2002, Cell.

[9]  B. Levin,et al.  The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. , 2000, The New England journal of medicine.

[10]  Hans Clevers,et al.  Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC , 1997, Science.

[11]  K. Kinzler,et al.  Top-down morphogenesis of colorectal tumors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Darryl Shibata,et al.  Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis , 1993, Nature.

[13]  R. Kucherlapati,et al.  p21(WAF1/cip1) is an important determinant of intestinal cell response to sulindac in vitro and in vivo. , 2001, Cancer research.

[14]  Hans Clevers,et al.  Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4 , 1998, Nature Genetics.

[15]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[16]  G. Beck,et al.  A Randomized Trial of Aspirin to Prevent Colorectal Adenomas , 2003 .

[17]  R. Kucherlapati,et al.  p21WAF1/cip1 is an important determinant of intestinal cell response to sulindac in vitro and in vivo , 2001 .

[18]  B. Dynlacht,et al.  The anti-proliferative effect of sulindac and sulindac sulfide on HT-29 colon cancer cells: alterations in tumor suppressor and cell cycle-regulatory proteins. , 1996, Oncogene.

[19]  S. Piantadosi,et al.  Primary chemoprevention of familial adenomatous polyposis with sulindac , 2002 .

[20]  Michael J Thun,et al.  Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. , 2002, Journal of the National Cancer Institute.

[21]  Peter K. Sorger,et al.  A role for the Adenomatous Polyposis Coli protein in chromosome segregation , 2001, Nature Cell Biology.

[22]  P. Lavori,et al.  Effect of sulindac on sporadic colonic polyps. , 1995, Gastroenterology.

[23]  B. Rigas,et al.  Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. , 1996, Biochemical pharmacology.

[24]  T. Chan,et al.  Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention. , 2002, The Lancet. Oncology.

[25]  C. Williams,et al.  Randomized controlled trial of the effect of sulindac on duodenal and rectal polyposis and cell proliferation in patients with familial adenomatous polyposis , 1993, The British journal of surgery.

[26]  K. Kinzler,et al.  Lessons from Hereditary Colorectal Cancer , 1996, Cell.

[27]  Susan Halabi,et al.  A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. , 2003, The New England journal of medicine.