Recent Advances in Photonic Devices for Optical Super Computing

The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks (SANs) [1], parallel processing [2,3], optical switches [4,5], all-optical data networks [6], holographic storage devices [7] and biometric devices at airports [8].

[1]  David Beljonne,et al.  Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. , 2004, Chemical reviews.

[2]  E. Glushko,et al.  All-optical signal processing in photonic structures with shifting bands , 2004 .

[3]  Nasser N Peyghambarian,et al.  New polymeric material containing the tricyanovinylcarbazole group for photorefractive applications , 1992 .

[4]  Donald O. Frazier,et al.  An all-optical picosecond switch in polydiacetylene , 2003 .

[5]  Yong-Hee Lee,et al.  Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes , 2006 .

[6]  C. Cordeiro,et al.  Photonic bandgap with an index step of one percent. , 2005, Optics express.

[7]  E. Sargent,et al.  A solution-processed 1.53 mum quantum dot laser with temperature-invariant emission wavelength. , 2006, Optics express.

[8]  Massimo Malagoli,et al.  The role of vibronic interactions on intramolecular and intermolecular electron transfer in π-conjugated oligomers , 2003 .

[9]  Jean-Pierre Huignard,et al.  Photorefractive Materials and Their Applications I , 2006 .

[10]  ALFRED W. BENNETT On the Fertilisation of Winter-Flowering Plants , 1869, Nature.

[11]  Masanori Koshiba,et al.  All-optical logic gates based on nonlinear slot-waveguide couplers , 2006 .

[12]  Young Min Jhon,et al.  All-Optical AND Gate Using Probe and Pump Signals as the Multiple Binary Points in Cross Phase Modulation : Optics and Quantum Electronics , 2002 .

[13]  Philippe M. Fauchet,et al.  Tunable photonic bandgap structures for optical interconnects , 2005 .

[14]  Jingdong Luo,et al.  Exceptional electro-optic properties through molecular design and controlled self-assembly , 2005, SPIE Optics + Photonics.

[15]  Aleksandar D Rakić,et al.  Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes. , 2005, Applied optics.

[16]  Ananth Dodabalapur,et al.  Organic light emitting diodes , 1997 .

[17]  W. E. Moerner,et al.  Spontaneous Oscillation and Self-Pumped Phase Conjugation in a Photorefractive Polymer Optical Amplifier , 1997 .

[18]  G. Gigli,et al.  Bright White‐Light‐Emitting Device from Ternary Nanocrystal Composites , 2006 .

[19]  Tsuyoshi Konishi,et al.  Ultrafast all-optical processor for time-to-two-dimensional space conversion by using second harmonic generation , 2000, SPIE Optics + Photonics.

[20]  Satoru Shimada,et al.  Solid-state light-emitting devices based on the tris-chelated ruthenium(II) complex. 4. High-efficiency light-emitting devices based on derivatives of the tris(2,2'-bipyridyl) ruthenium(II) complex. , 2002, Journal of the American Chemical Society.

[21]  P. W. Smith,et al.  Solid state: Bistable optical devices promise subpicosecond switching: Extensive research in materials and phenomena could lead to their ultimate use in optical communications, despite high power dissipation , 1981, IEEE Spectrum.

[22]  K. Hinton,et al.  Automatic laser shutdown implications for all optical data networks , 2006, Journal of Lightwave Technology.

[23]  Ye Wang,et al.  High-density nonvolatile volume holographic disc storage , 2004, Optical Data Storage.

[24]  Ivan Biaggio,et al.  Highly efficient third-order optical nonlinearities in donor-substituted cyanoethynylethene molecules. , 2005, Optics letters.

[25]  Antao Chen,et al.  Electro-optic coefficients of 500 pm/V and beyond for organic materials , 2005, SPIE Optics + Photonics.

[26]  Nasser N Peyghambarian,et al.  New highly efficient photorefractive polymer composite for optical-storage and image-processing applications , 1993 .

[27]  Robert A Norwood,et al.  Organic optoelectronics: Materials and devices for photonic applications, Part II , 2005 .

[28]  Kun Xu,et al.  40 Gbit ∕ s all-optical logic NOR gate based on a semiconductor optical amplifier and a filter , 2006 .

[29]  Toshihiko Baba Remember the light , 2007 .

[30]  George G. Malliaras,et al.  Efficient Electroluminescent Devices Based on a Chelated Osmium(II) Complex , 2002 .

[31]  Karsten Buse,et al.  Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate , 1998 .

[32]  B. Batlogg,et al.  An organic solid state injection laser. , 2000, Science.

[33]  Kurt Busch,et al.  Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum , 1999 .

[34]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[35]  Zhenan Bao,et al.  Organic thin film transistors , 2004 .

[36]  Roger Highfield Selling Science to the Public , 2000, Science.

[37]  R. Beyeler,et al.  Optical interconnect demonstrator with embedded waveguides and butt-coupled optoelectronic modules , 2005, 2005 OSA Topical Meeting on Information Photonics (IP).

[38]  A. I. Ryasnyanskiĭ,et al.  Three-Photon Absorption in Photorefractive BSO and BGO Crystals , 2004 .

[39]  Akira Emoto,et al.  Reconstruction of two-dimensional optical image from nonlocal gratings in a photorefractive mesogenic composite , 2004 .

[40]  J. Brédas,et al.  A multimode analysis of the gas-phase photoelectron spectra in oligoacenes. , 2004, The Journal of chemical physics.

[41]  Athos Petrou,et al.  Fabrication of flexible monocrystalline ZnSe‐based foils and membranes , 1996 .

[42]  N. Peyghambarian,et al.  A photorefractive polymer with high optical gain and diffraction efficiency near 100% , 1994, Nature.

[43]  Hall,et al.  Photorefractivity in a functional side-chain polymer. , 1993, Physical review. B, Condensed matter.

[44]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[45]  A. Chraplyvy,et al.  WDM systems with unequally spaced channels , 1995 .

[46]  Feng Zhang,et al.  Microstructured Optical Fibers as High-Pressure Microfluidic Reactors , 2006, Science.

[47]  Songnian Fu,et al.  All-optical adders based on transient cross phase modulation using a single semiconductor optical amplifier , 2006, SPIE/OSA/IEEE Asia Communications and Photonics.

[48]  Ahmed Louri,et al.  A Spanning Multichannel Linked Hypercube: A Gradually Scalable Optical Interconnection Network for Massively Parallel Computing , 1998, IEEE Trans. Parallel Distributed Syst..

[49]  Jörgen Bengtsson,et al.  Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators. , 2007, Applied optics.

[50]  W E Moerner,et al.  Net two-beam-coupling gain in a polymeric photorefractive material. , 1993, Optics letters.

[51]  Y. A. Zaghloul,et al.  Complete all-optical processing polarization-based binary logic gates and optical processors. , 2006, Optics express.

[52]  J. Campbell Scott Conducting Polymers: From Novel Science to New Technology , 1997, Science.

[53]  Scott,et al.  Observation of the photorefractive effect in a polymer. , 1991, Physical review letters.

[54]  Tobin J Marks,et al.  Organic light-emitting diodes having carbon nanotube anodes. , 2006, Nano letters.

[55]  Chunming Qiao,et al.  Guest editorial high-performance optical switches/routers for high-speed internet , 2003, IEEE J. Sel. Areas Commun..

[56]  J. M. Shaw,et al.  Organic electronics: Introduction , 2001, IBM J. Res. Dev..

[57]  J. P. Calbert,et al.  Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Donal D. C. Bradley,et al.  Conjugated polymer electroluminescence , 1993 .

[59]  Il-Sug Chung,et al.  High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors. , 2006, Optics express.

[60]  Shin-Tson Wu,et al.  All-optical display using photoinduced anisotropy in a bacteriorhodopsin film. , 2004, Optics letters.

[61]  J. Brédas,et al.  Hole- and electron-vibrational couplings in oligoacene crystals: intramolecular contributions. , 2002, Physical review letters.

[62]  Xinliang Zhang,et al.  Ultrahigh-speed all-optical half adder based on four-wave mixing in semiconductor optical amplifier. , 2006, Optics express.

[63]  Larry R. Dalton,et al.  Nanoscale architectural control and macromolecular engineering of nonlinear optical dendrimers and polymers for electro-optics , 2004 .

[64]  Kouichi Nitta,et al.  An optical parallel processing for multiplier modulo using an optical interferometer , 2006, SPIE Optics + Photonics.

[65]  Eric M. Yeatman,et al.  Silicon MEMS for Photonic Bandgap Devices , 2006 .

[66]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[67]  Junewen Chen,et al.  Phase Conjugation with Picosecond Pulses in BaTi03 , 1996 .

[68]  Robert A Norwood,et al.  Technological advances brighten horizons for organic nonlinear optics , 2006 .

[69]  Baojun Li,et al.  Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference. , 2005, Optics express.

[70]  Jean-Pierre Galaup,et al.  Persistent spectral hole burning in an organic material for temporal pattern recognition , 1999 .

[71]  Alan F. Benner,et al.  Exploitation of optical interconnects in future server architectures , 2005 .

[72]  Dana Z. Anderson High Gains for Polymer Dynamic Holography , 1997, Science.

[73]  S. LaRochelle,et al.  A Single All-Optical Processor for Multiple Spectral Amplitude Code Label Recognition Using Four Wave Mixing , 2006, 2006 European Conference on Optical Communications.

[74]  Ya Yan Lu,et al.  Photonic bandgap calculations with Dirichlet-to-Neumann maps. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[75]  Ariel Lipson,et al.  Low-loss one-dimensional photonic bandgap filter in (110) silicon. , 2006, Optics letters.

[76]  D. Van Thourhout,et al.  All-optical high speed NOR gate based on two photon absorption in silicon wire waveguides , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[77]  D. Lenstra,et al.  All-optical logic gates using semiconductor optical amplifier assisted by optical filter , 2005 .

[78]  David J. Williams,et al.  Photorefractive effect in a new organic system of doped nonlinear polymer , 1992 .

[79]  Oskar Painter,et al.  Experimental demonstration of a high quality factor photonic crystal microcavity , 2003 .

[80]  Suguru Sangu,et al.  Optical interconnects based on optical far- and near-field interactions for high-density data broadcasting. , 2006, Optics express.

[81]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[82]  Jan Kalinowski,et al.  Organic Light-Emitting Diodes , 2004 .

[83]  Donald O. Frazier,et al.  Optical computing: need and challenge , 2007, CACM.

[84]  K. Stubkjaer,et al.  Semiconductor optical amplifier-based all-optical gates for high-speed optical processing , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[85]  Lei Zhang,et al.  High-Performance Photorefractive Polymers , 1994, Science.