Impact of interlayer application on band bending for improved electron extraction for efficient flexible perovskite mini-modules
暂无分享,去创建一个
Stephan Buecheler | Roland Widmer | A. Tiwari | S. Buecheler | R. Widmer | R. Carron | Stefano Pisoni | Fan Fu | Romain Carron | Thierry Moser | Oliver Groening | Ayodhya N. Tiwari | Stefano Pisoni | O. Groening | Thierry A. Moser | F. Fu
[1] M. Grätzel,et al. Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .
[2] D. Sacchetto,et al. Closing the Cell-to-Module Efficiency Gap: A Fully Laser Scribed Perovskite Minimodule With 16% Steady-State Aperture Area Efficiency , 2018, IEEE Journal of Photovoltaics.
[3] Dong Uk Lee,et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.
[4] Anders Hagfeldt,et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.
[5] Jong-Kwon Lee,et al. Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency , 2016 .
[6] Valerio Romano,et al. A monolithically integrated high‐efficiency Cu(In,Ga)Se2 mini‐module structured solely by laser , 2015 .
[7] Sung Cheol Yoon,et al. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells , 2014 .
[8] M. Welland,et al. Modulations of valence-band photoemission spectrum from C 60 monolayers on Ag(111) , 2003 .
[9] Aldo Di Carlo,et al. Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates , 2015 .
[10] Han‐Ik Joh,et al. Reduced graphene oxide-assisted crystallization of perovskite via solution-process for efficient and stable planar solar cells with module-scales , 2016 .
[11] Michael Schmidt,et al. Laser-Patterning Engineering for Perovskite Solar Modules With 95% Aperture Ratio , 2017, IEEE Journal of Photovoltaics.
[12] Jinsong Huang,et al. Efficient Flexible Solar Cell based on Composition‐Tailored Hybrid Perovskite , 2017, Advanced materials.
[13] Henk J. Bolink,et al. Flexible high efficiency perovskite solar cells , 2014 .
[14] N. Park,et al. Impact of Interfacial Layers in Perovskite Solar Cells. , 2017, ChemSusChem.
[15] C. Ballif,et al. Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate , 2010 .
[16] Jonathan P. Mailoa,et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.
[17] Y. Hao,et al. Effect of polyelectrolyte interlayer on efficiency and stability of p-i-n perovskite solar cells , 2016 .
[18] Ruixia Yang,et al. Hysteresis‐Suppressed High‐Efficiency Flexible Perovskite Solar Cells Using Solid‐State Ionic‐Liquids for Effective Electron Transport , 2016, Advanced materials.
[19] Ronald A. Sinton,et al. Editorial to the Proceedings of the 4th International Conference on Crystalline Silicon Photovoltaics (SiliconPV 2014) , 2014 .
[20] Yue Zhang,et al. Efficient Yttrium(III) Chloride-Treated TiO2 Electron Transfer Layers for Performance-Improved and Hysteresis-Less Perovskite Solar Cells. , 2018, ChemSusChem.
[21] C. Brabec,et al. Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer , 2014 .
[22] Timothy L. Kelly,et al. Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .
[23] M. Green,et al. The emergence of perovskite solar cells , 2014, Nature Photonics.
[24] S. Nishiwaki,et al. Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices , 2017 .