A model-based development environment for rapid-prototyping of latency-sensitive automotive control software

The innovation in the field of automotive embedded systems has been increasingly relying on software-implemented functions. The control laws of these functions typically assume deterministic sampling rates and constant delays from input to output. However, on the target processors, the execution times of the software will depend on many factors such as the amount of interferences from other tasks, resulting in varying delays from sensing to actuating. Three approaches supported by tools, namely TrueTime, T-Res, and SimEvents, have been developed to facilitate the evaluation of how timing latencies affect control performance. However, these approaches support the simulation of control algorithms, but not their actual implementation. In this paper, we present a model interpretation engine running in a co-simulation environment to study control performances while considering the run-time delays in to account. Introspection features natively available facilitate the implementation of self-adaptive and fault-tolerance strategies to mitigate and compensate the run-time latencies. A DC servo controller is used as a supporting example to illustrate our approach. Experiments on controller tasks with injected delays show that our approach is on par with the existing techniques with respect to simulation. We then discuss the main benefits of our development approach that are the support for rapid-prototyping and the re-use of the simulation model at run-time, resulting in productivity and quality gains.