Development of Large-Scale Functional Brain Networks in Children

Large-scale rewiring of brain circuits in children leads to emergence of hierarchical organization in the mature adult brain.

[1]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[2]  J. Changeux,et al.  Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks , 1976, Nature.

[3]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[4]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[5]  H. Loos,et al.  Synaptogenesis in human visual cortex — evidence for synapse elimination during normal development , 1982, Neuroscience Letters.

[6]  P S Goldman-Rakic,et al.  Development of cortical circuitry and cognitive function. , 1987, Child development.

[7]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[8]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[9]  P. Huttenlocher Morphometric study of human cerebral cortex development , 1990, Neuropsychologia.

[10]  A Capdevila,et al.  When does human brain development end? Evidence of corpus callosum growth up to adulthood , 1993, Annals of neurology.

[11]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[12]  M. Lowe,et al.  Functional Connectivity in Single and Multislice Echoplanar Imaging Using Resting-State Fluctuations , 1998, NeuroImage.

[13]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[14]  E. Courchesne,et al.  Magnetic resonance imaging study of the brain in autism , 1998, Psychiatry and clinical neurosciences.

[15]  J. Cummings,et al.  Frontal-subcortical circuits and human behavior. , 1993, Journal of psychosomatic research.

[16]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[17]  Alan C. Evans,et al.  Brain development during childhood and adolescence: a longitudinal MRI study , 1999, Nature Neuroscience.

[18]  Christoph Braun,et al.  Coherence of gamma-band EEG activity as a basis for associative learning , 1999, Nature.

[19]  Alan C. Evans,et al.  Structural maturation of neural pathways in children and adolescents: in vivo study. , 1999, Science.

[20]  V. Haughton,et al.  Mapping functionally related regions of brain with functional connectivity MR imaging. , 2000, AJNR. American journal of neuroradiology.

[21]  M. Mesulam Principles of Behavioral and Cognitive Neurology , 2000 .

[22]  M. Mesulam,et al.  Principles of behavioral and cognitive neurology, 2nd ed. , 2000 .

[23]  A. Damasio,et al.  Emotion, decision making and the orbitofrontal cortex. , 2000, Cerebral cortex.

[24]  Alan C. Evans,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2000, Nature.

[25]  Michael R. Chernick,et al.  Wavelet Methods for Time Series Analysis , 2001, Technometrics.

[26]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[27]  S. Strogatz Exploring complex networks , 2001, Nature.

[28]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[29]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[30]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[31]  G. Glover,et al.  Spiral‐in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts , 2001, Magnetic resonance in medicine.

[32]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[33]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  P. Strick,et al.  Basal-ganglia 'projections' to the prefrontal cortex of the primate. , 2002, Cerebral cortex.

[35]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[36]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[37]  Eric Courchesne,et al.  Cerebral Lobes in Autism: Early Hyperplasia and Abnormal Age Effects , 2002, NeuroImage.

[38]  T. Klingberg,et al.  Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network. , 2003, Brain research. Cognitive brain research.

[39]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  S. Haber The primate basal ganglia: parallel and integrative networks , 2003, Journal of Chemical Neuroanatomy.

[41]  Ann M Graybiel,et al.  Network-level neuroplasticity in cortico-basal ganglia pathways. , 2004, Parkinsonism & related disorders.

[42]  E. Crone,et al.  Developmental Changes in Real Life Decision Making: Performance on a Gambling Task Previously Shown to Depend on the Ventromedial Prefrontal Cortex , 2004, Developmental neuropsychology.

[43]  Thomas F. Nugent,et al.  Dynamic mapping of human cortical development during childhood through early adulthood. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  E. Bullmore,et al.  Wavelets and functional magnetic resonance imaging of the human brain , 2004, NeuroImage.

[45]  Suzanne E. Welcome,et al.  Longitudinal Mapping of Cortical Thickness and Brain Growth in Normal Children , 2022 .

[46]  C. J. Stam,et al.  Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? , 2004, Neuroscience Letters.

[47]  L. Steinberg Cognitive and affective development in adolescence , 2005, Trends in Cognitive Sciences.

[48]  T. Paus Mapping brain maturation and cognitive development during adolescence , 2005, Trends in Cognitive Sciences.

[49]  P. Matthews,et al.  Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system , 2005, Experimental Brain Research.

[50]  Christian Beaulieu,et al.  Diffusion tensor imaging of neurodevelopment in children and young adults , 2005, NeuroImage.

[51]  V. Menon,et al.  White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. , 2005, Cerebral cortex.

[52]  K. Kiehl,et al.  A supramodal limbic‐paralimbic‐neocortical network supports goal‐directed stimulus processing , 2005, Human brain mapping.

[53]  K. Thomas,et al.  MR quantitation of volume and diffusion changes in the developing brain. , 2005, AJNR. American journal of neuroradiology.

[54]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[55]  Arthur W Toga,et al.  Structural MRI and brain development. , 2005, International review of neurobiology.

[56]  Mark H. Johnson,et al.  Processes of change in brain and cognitive development , 2005, Trends in Cognitive Sciences.

[57]  Yuan Zhou,et al.  Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging , 2006, Neuroreport.

[58]  S. Haber,et al.  Reward-Related Cortical Inputs Define a Large Striatal Region in Primates That Interface with Associative Cortical Connections, Providing a Substrate for Incentive-Based Learning , 2006, The Journal of Neuroscience.

[59]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[60]  C. Liston,et al.  Frontostriatal microstructure modulates efficient recruitment of cognitive control. , 2006, Cerebral cortex.

[61]  C. Stam,et al.  Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis , 2006, Neuroscience Letters.

[62]  Benjamin J. Shannon,et al.  Coherent spontaneous activity identifies a hippocampal-parietal memory network. , 2006, Journal of neurophysiology.

[63]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[64]  Justin L. Vincent,et al.  Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Olaf Sporns,et al.  Small worlds inside big brains , 2006, Proceedings of the National Academy of Sciences.

[66]  Vinod Menon,et al.  Temporal dynamics of basal ganglia response and connectivity during verbal working memory , 2007, NeuroImage.

[67]  Reto Meuli,et al.  Myelination shapes functional activity in the developing brain , 2007, NeuroImage.

[68]  I. Fried,et al.  Coupling between Neuronal Firing Rate, Gamma LFP, and BOLD fMRI Is Related to Interneuronal Correlations , 2007, Current Biology.

[69]  J. Wallis Orbitofrontal cortex and its contribution to decision-making. , 2007, Annual review of neuroscience.

[70]  Guido Gerig,et al.  Diffusion tensor imaging: Application to the study of the developing brain. , 2007, Journal of the American Academy of Child and Adolescent Psychiatry.

[71]  Alan C. Evans,et al.  Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation , 2007, Proceedings of the National Academy of Sciences.

[72]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[73]  S. Petersen,et al.  Development of distinct control networks through segregation and integration , 2007, Proceedings of the National Academy of Sciences.

[74]  Khader M Hasan,et al.  Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents. , 2007, Cerebral cortex.

[75]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[76]  Edward T. Bullmore,et al.  Efficiency and Cost of Economical Brain Functional Networks , 2007, PLoS Comput. Biol..

[77]  Khader M. Hasan,et al.  White matter development during late adolescence in healthy males: A cross-sectional diffusion tensor imaging study , 2007, NeuroImage.

[78]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[79]  Roger Guimerà,et al.  Extracting the hierarchical organization of complex systems , 2007, Proceedings of the National Academy of Sciences.

[80]  I. Fried,et al.  Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex , 2008, Nature Neuroscience.

[81]  Jay N Giedd,et al.  The teen brain: insights from neuroimaging. , 2008, The Journal of adolescent health : official publication of the Society for Adolescent Medicine.

[82]  Alexander Leemans,et al.  Microstructural maturation of the human brain from childhood to adulthood , 2008, NeuroImage.

[83]  A. Graybiel Habits, rituals, and the evaluative brain. , 2008, Annual review of neuroscience.

[84]  Alan C. Evans,et al.  Neurodevelopmental Trajectories of the Human Cerebral Cortex , 2008, The Journal of Neuroscience.

[85]  S. Petersen,et al.  The maturing architecture of the brain's default network , 2008, Proceedings of the National Academy of Sciences.

[86]  Daniel P. Kennedy,et al.  The intrinsic functional organization of the brain is altered in autism , 2008, NeuroImage.

[87]  E. Bullmore,et al.  Hierarchical Organization of Human Cortical Networks in Health and Schizophrenia , 2008, The Journal of Neuroscience.

[88]  Richard S. J. Frackowiak,et al.  Evidence for Segregated and Integrative Connectivity Patterns in the Human Basal Ganglia , 2008, The Journal of Neuroscience.

[89]  T. Paus,et al.  Why do many psychiatric disorders emerge during adolescence? , 2008, Nature Reviews Neuroscience.

[90]  Daniel L. Rubin,et al.  Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease , 2008, PLoS Comput. Biol..

[91]  T. Egner,et al.  Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. , 2008, Cerebral cortex.

[92]  Brent L. Hughes,et al.  Prefrontal-Subcortical Pathways Mediating Successful Emotion Regulation , 2008, Neuron.

[93]  Heidi Johansen-Berg,et al.  Changes in white matter microstructure during adolescence , 2008, NeuroImage.

[94]  V. Menon,et al.  A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks , 2008, Proceedings of the National Academy of Sciences.

[95]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[96]  D. Margulies,et al.  Development of anterior cingulate functional connectivity from late childhood to early adulthood. , 2009, Cerebral cortex.

[97]  Edward T. Bullmore,et al.  Age-related changes in modular organization of human brain functional networks , 2009, NeuroImage.

[98]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[99]  M. Greicius,et al.  Resting-state functional connectivity reflects structural connectivity in the default mode network. , 2009, Cerebral cortex.

[100]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[101]  Liang Wang,et al.  Altered small‐world brain functional networks in children with attention‐deficit/hyperactivity disorder , 2009, Human brain mapping.

[102]  A. Craig,et al.  How do you feel — now? The anterior insula and human awareness , 2009, Nature Reviews Neuroscience.