Spectral hole burning study of intact cells of green bacterium Chlorobium limicola

[1]  M. Seibert,et al.  Energy transfer dynamics of the B800—B850 antenna complex of Rhodobacter sphaeroides: a hole burning study , 1991 .

[2]  R. W. Visschers,et al.  Energy transfer in the B800–850 antenna complex of purple bacteria Rhodobacter sphaeroides: A study by spectral hole-burning , 1990 .

[3]  I. Yamazaki,et al.  Excitation energy flow in chlorosome antennas of green photosynthetic bacteria , 1989 .

[4]  Z. Fetisova,et al.  Biological expedience of oligomerization of chlorophyllous pigments in natural photosynthetic systems , 1989 .

[5]  S. G. Johnson,et al.  Spectral hole burning of a strongly exciton-coupled bacteriochlorophyll a antenna complex , 1989 .

[6]  J. Golbeck,et al.  Nonphotochemical hole burning of the native antenna complex of photosystem I (PSI-200) , 1989 .

[7]  A. Freiberg,et al.  Long-range molecular order as an efficient strategy for light harvesting in photosynthesis , 1988, Nature.

[8]  W. Köhler,et al.  Site-selective spectroscopy and level ordering in C-phycocyanine , 1988 .

[9]  Kevin M. Smith,et al.  Aggregation of the bacteriochlorophylls c, d, and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria , 1983 .

[10]  A. Borisov,et al.  Picosecond time scale of heterogeneous excitation energy transfer from accessory light‐harvesting bacterioviridin antenna to main bacteriochlorophyll a antenna in photoactive pigment—protein complexes obtained from Chlorobium limicola, a green bacterium , 1980 .

[11]  L. Staehelin,et al.  Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. , 1980, Biochimica et biophysica acta.

[12]  Z. Fetisova Excitation Energy Transfer in Photosynthetic Systems: Pigment Oligomerization Effect , 1990 .