A cut-off in the TeV gamma-ray spectrum of the SNR Cassiopeia A

It is widely believed that the bulk of the Galactic cosmic rays are accelerated in supernova remnants (SNRs). However, no observational evidence of the presence of particles of PeV energies in SNRs has yet been found. The young historical SNR Cassiopeia A (Cas A) appears as one of the best candidates to study acceleration processes. Between December 2014 and October 2016 we observed Cas A with the MAGIC telescopes, accumulating 158 hours of good-quality data. We derived the spectrum of the source from 100 GeV to 10 TeV. We also analysed ∼8 years of F ermiLAT to obtain the spectral shape between 60 MeV and 500 GeV. The spectra measured by the LAT and MAGIC telescopes are compatible within the errors and show a clear turn off (4.6 σ) at the highest energies, which can be described with an exponential cut-off at Ec = 3.5(₋₁‚₀⁺¹’⁶ )_(stat) (⁺⁰’⁸ ₋‚₀₉)_(sys) TeV. The gamma-ray emission from 60 MeV to 10 TeV can be attributed to a population of high-energy protons with spectral index ∼2.2 and energy cut-off at ∼10 TeV. This result indicates that Cas A is not contributing to the high energy (∼PeV) cosmic-ray sea in a significant manner at the present moment. A one-zone leptonic model fails to reproduce by itself the multiwavelength spectral energy distribution. Besides, if a non-negligible fraction of the flux seen by MAGIC is produced by leptons, the radiation should be emitted in a region with a low magnetic field (B<≈100µG) like in the reverse shock.

India. | Munchen | Kolkata | L. A. Antonelli | Padova | Kyoto | Pisa | Lodz | Roma | Barcelona | Zurich | Technology | Bellaterra | Zeuthen | Technische Universitat Dortmund | Dortmund | Madrid | H Germany | R. Carosi | Spain. | Instituto de Astrof'isica de Canarias | La Laguna | M. F. Physik | Switzerland. | Finland. | I-35131 Padova | Italy. | Japan. | U. Barcelona | K. Nishijima | E. Bernardini | W. Rhode | K. Satalecka | S. Ansoldi | O. Blanch | R. Paoletti | A. Angelis | B. Lotto | D. Lelas | I. Puljak | M. Acosta | K. Mannheim | Infn | A. Treves | K. Noda | A. Biland | R. Mirzoyan | M. Teshima | V. Neustroev | D. Fisica | D. Paneque | M. Will | T. Saito | T. Schweizer | S. Covino | Berlin | F. Longo | S. Shore | Institute for Particle Physics | Inst. for Nucl. Research | Sofía | M. Makariev | H. Kubo | E. Zurich | Institut de F'isica d'Altes Energies | D. Ninci | C. Fruck | P. Majumdar | Poland | M. Gaug | L. Maraschi | J. Kushida | J. Ward | M. Mariotti | D. Góra | S. Paiano | D. Guberman | F. Dazzi | J. Barrio | W. Bednarek | G. Bonnoli | A. Carosi | P. Colin | J. Contreras | J. Cortina | E. O. Wilhelmi | F. Pierro | M. Doert | D. Prester | D. Dorner | M. Doro | S. Einecke | L. Font | D. Hadasch | T. Hassan | M. Hayashida | D. Hrupec | Y. Konno | E. Lindfors | G. Maneva | D. Mazin | A. Niedźwiecki | J. Paredes | G. Pedaletti | M. Persic | E. Prandini | J. Rico | J. Sitarek | D. Sobczynska | A. Stamerra | L. Takalo | P. Temnikov | E. Moretti | F. Tavecchio | P. Bangale | U. D. Almeida | J. Gonz'alez | S. Bonnefoy | E. Colombo | P. D. Vela | A. Dom'inguez | D. Elsaesser | R. L'opez | M. Garczarczyk | N. Godinovi'c | J. Herrera | J. Hose | S. Lombardi | M. L'opez | M. Mart'inez | U. Menzel | A. Moralejo | K. Nilsson | P. Moroni | M. Rib'o | J. R. Garcia | M. Strzys | T. Suri'c | T. Terzi'c | D. Tescaro | U. Udine | I. I. F. Astrophysics | U. Siena | I. Pisa | University of Rijeka | Croatia. | U. Complutense | D. Zeuthen | Japanese Magic Consortium | Finnish Magic Consortium | T. Observatory | U. Turku | U. Oulu | Nucl. Energy | Bulgaria. | U. Pisa | C. Arcaro | D. Glawion | M. Fonseca | T. Science | I. Reichardt | M. Engelkemeier | Finnish Magic Consortium Finnish Centre of Astronomy with Eso | Piikkio | L. Perri | Siena | Wurzburg | Udine | P. Cumani | Sezione di Trieste | C. Maggio | I. Physik | I. Vovk | G. Vanzo | Michele Peresano | A. Berti | T. Inada | W. Bhattacharyya | A. Hahn | K. Ishio | M. Manganaro | V. Moreno | C. Righi | P. Giammaria | B. Biasuzzi | A. Fern'andez-Barral | D. Fidalgo | D. Galindo | S. M. Colak | M. N. Rosillo | M. L. Ahnen | B. Banerjee | A. Chatterjee | J. Palacio | Saha Institute of Nuclear Physics | Institute for Space Sciences | H. Berlin | A. Babi'c | V. Ramazani | D. Kuvevzdi'c | M. Minev | L. Nogu'es | S. Schroeder | I. vSnidari'c | N. Torres-Albà | D. Zari'c | U. O. S. -. Fesb | University of Osijek | Hbni | A. Division | U. Lodz | Grupo de Altas Energias | D. Padova | Croatian Magic Consortium Rudjer Boskovic Institute | University of Zagreb-FER | Split | Division of Astrophysics | Institut fur Theoretische Physik und Astrophysik - Fakultat Wurzburg | A. Domínguez | L. Antonelli | J. Ward | E. Bernardini | I. Puljak | T. Saito | J. Garcia

[1]  India.,et al.  Performance of the MAGIC telescopes under moonlight , 2017, 1704.00906.

[2]  T. Gaisser Cosmic rays and particle physics , 2016 .

[3]  Wei Wang,et al.  HARD X-RAY EMISSIONS FROM CASSIOPEIA A OBSERVED BY INTEGRAL , 2016, 1605.00360.

[4]  E. Dwek,et al.  Dust Destruction by the Reverse Shock in the Cassiopeia A Supernova Remnant , 2016, 1602.02754.

[5]  J. Greiner,et al.  Revisiting INTEGRAL/SPI observations of 44Ti from Cassiopeia A , 2015, 1505.05999.

[6]  Chris L. Fryer,et al.  LOCATING THE MOST ENERGETIC ELECTRONS IN CASSIOPEIA A , 2015, The Astrophysical Journal.

[7]  P. Munar-Adrover,et al.  The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula , 2014, 1409.5594.

[8]  F. Aharonian,et al.  Parametrization of gamma-ray production cross-sections for pp interactions in a broad proton energy range from the kinematic threshold to PeV energies , 2014, 1406.7369.

[9]  R. Tuffs,et al.  NONTHERMAL RADIATION OF YOUNG SUPERNOVA REMNANTS: THE CASE OF CAS A , 2014 .

[10]  P. Majumdar,et al.  Origin of gamma-ray emission in the shell of Cassiopeia A , 2014, 1401.5626.

[11]  Y. Uchiyama,et al.  FERMI LARGE AREA TELESCOPE DETECTION OF A BREAK IN THE GAMMA-RAY SPECTRUM OF THE SUPERNOVA REMNANT CASSIOPEIA A , 2013, 1310.8287.

[12]  F. Aharonian,et al.  SIMPLE ANALYTICAL APPROXIMATIONS FOR TREATMENT OF INVERSE COMPTON SCATTERING OF RELATIVISTIC ELECTRONS IN THE BLACKBODY RADIATION FIELD , 2013, 1310.7971.

[13]  C. A. Oxborrow,et al.  Planck2013 results. XXVIII. ThePlanckCatalogue of Compact Sources , 2013, Astronomy &amp; Astrophysics.

[14]  A. Bell Cosmic ray acceleration , 2013 .

[15]  F. Aharonian Gamma rays from supernova remnants , 2013 .

[16]  P. Giommi,et al.  Detection of the Characteristic Pion-Decay Signature in Supernova Remnants , 2013, Science.

[17]  A. Bell,et al.  Cosmic ray acceleration and escape from supernova remnants , 2013, 1301.7264.

[18]  V. Golev,et al.  Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy , 2011 .

[19]  F. Aharonian,et al.  Angular, spectral, and time distributions of highest energy protons and associated secondary gamma-rays and neutrinos propagating through extragalactic magnetic and radiation fields , 2010, 1006.1045.

[20]  J. Chiang,et al.  FERMI-LAT DISCOVERY OF GeV GAMMA-RAY EMISSION FROM THE YOUNG SUPERNOVA REMNANT CASSIOPEIA A , 2010, 1001.1419.

[21]  Y. Ezoe,et al.  Suzaku X -ray im aging and spectroscopy ofC assiopeia A , 2009, 0912.5020.

[22]  J. Vink,et al.  Characterizing the Nonthermal Emission of Cassiopeia A , 2008, 0806.3748.

[23]  F. Aharonian,et al.  Fast Variability of Nonthermal X-Ray Emission in Cassiopeia A: Probing Electron Acceleration in Reverse-Shocked Ejecta , 2008, 0803.3410.

[24]  R. Fesen,et al.  Small-Scale X-Ray Variability in the Cassiopeia A Supernova Remnant , 2006, astro-ph/0609412.

[25]  S. Bergh,et al.  Location of the Optical Reverse Shock in the Cassiopeia A Supernova Remnant , 2004 .

[26]  A. Bell Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays , 2004 .

[27]  Wolfgang A. Rolke,et al.  Limits and confidence intervals in the presence of nuisance parameters , 2004, physics/0403059.

[28]  U. Hwang,et al.  On the Determination of Ejecta Structure and Explosion Asymmetry from the X-Ray Knots of Cassiopeia A , 2003, astro-ph/0306119.

[29]  Heidelberg,et al.  Gamma-ray emission from Cassiopeia A produced by accelerated cosmic rays , 2003, astro-ph/0301205.

[30]  J. Martin Laming,et al.  On the Magnetic Fields and Particle Acceleration in Cassiopeia A , 2002, astro-ph/0210669.

[31]  L. Rudnick,et al.  The First Measurement of Cassiopeia A’s Forward Shock Expansion Rate , 2002, astro-ph/0303399.

[32]  U. Hwang,et al.  Chandra Detection of the Forward and Reverse Shocks in Cassiopeia A , 2001, astro-ph/0104161.

[33]  et al,et al.  Evidence for TeV gamma ray emission from Cassiopeia A , 2001, astro-ph/0102391.

[34]  S. Reynolds,et al.  Radio to Gamma-Ray Emission from Shell-Type Supernova Remnants: Predictions from Nonlinear Shock Acceleration Models , 1998, astro-ph/9810158.

[35]  Elizabeth Waldram,et al.  A revised machine-readable source list for the Rees 38-MHz survey , 1995 .

[36]  L. Rudnick,et al.  The deceleration powering of synchrotron emission from ejecta components in supernova remnant Cassiopeia A , 1995 .

[37]  A. Fabian,et al.  The Three-dimensional Structure of the Cassiopeia A Supernova Remnant. I. The Spherical Shell , 1995 .

[38]  V. P. Fomin,et al.  New methods of atmospheric Cherenkov imaging for gamma-ray astronomy. I. The false source method , 1994 .

[39]  Richard A. Perley,et al.  Relativistic Electron Populations in Cassiopeia A , 1991 .

[40]  W. I. Axford THE ACCELERATION OF COSMIC RAYS BY SHOCK WAVES , 1981 .

[41]  S. Sarkar,et al.  A lower limit to the magnetic field in Cassiopeia-A , 1980 .

[42]  A. Bell The acceleration of cosmic rays in shock fronts – I , 1978 .

[43]  B. Ryabov,et al.  The Spectra of Discrete Radio Sources at Decametric Wavelengths—I , 1969 .

[44]  E. Parker,et al.  Precise Measurement of the Flux Densities of the Radio Sources Cas A and Cyg A at Metre Wavelengths , 1968 .

[45]  A. H. Barrett,et al.  Absolute Measurements of the Radio Flux from Cassiopeia A and Taurus A at 3.64 and 1.94 Cm , 1967 .

[46]  S. Syrovatskii,et al.  Origin of cosmic rays , 1966 .

[47]  W. Medd,et al.  Flux-Density Measurements AR 3.15 Gc/s. , 1965 .

[48]  F. Hoyle,et al.  Origin of Cosmic Rays , 1948, Nature.

[49]  Jeremiah P. Ostriker,et al.  Particle Acceleration by Astrophysical Shocks , 1978 .