On the determination of the volume dependence of Grüneisen parameters in cubic and non-cubic solids

Abstract For a material of orthorhombic symmetry under hydrostatic stress, three generalized Gruneisen parameters relative respectively to the three principal directions of the deformation can be defined. Finite strain expressions for these parameters are derived in terms of the Lagrangian strain tensor and the frame-indifferent analogue of the Eulerian strain tensor. The expressions require for their evaluation the thermal expansion coefficients, the elastic moduli and their pressure and temperature derivatives, and the specific heat of the material, so that there are no arbitrary constants or “curve fitting.” In the case of cubic materials, it is possible to determine the unique Gruneisen parameter as a function of volume directly. For non-cubic materials, the volume dependence of the Gruneisen parameters is calculated using a quasi-harmonic finite strain model of equation of state. Numerical applications are given for some cubic and hexagonal metals and the results are discussed.

[1]  O. Anderson,et al.  The use of ultrasonic measurements under modest pressure to estimate compression at high pressure , 1966 .

[2]  E. R. Naimon Third-Order Elastic Constants of Magnesium. I. Experimental , 1971 .

[3]  P. Ho,et al.  Analysis of ultrasonic data and experimental equation of state for sodium , 1968 .

[4]  Leon Thomsen,et al.  On the fourth-order anharmonic equation of state of solids , 1970 .

[5]  G. Alers,et al.  ELASTIC CONSTANTS OF SILVER AND GOLD , 1958 .

[6]  G. Perrin,et al.  Fourth-order quasi-harmonic equations of state for solids of cubic and tetragonal symmetry , 1977 .

[7]  G. Davies,et al.  Quasi-harmonic finite strain equations of state of solids* , 1973 .

[8]  W. C. Overton,et al.  Temperature Variation of the Elastic Constants of Cubic Elements. I. Copper , 1955 .

[9]  A. Migault Détermination semi-analytique de l'équation d'état des métaux. modèle a deux coefficients de Gruneisen , 1972 .

[10]  L. Knopoff,et al.  Comments on the interrelationships between Grüneisen's parameter and shock and isothermal equations of state , 1969 .

[11]  C. Garland,et al.  Elastic Constants of Cadmium from 4.2K to 300K , 1960 .

[12]  D. Lazarus The Variation of the Adiabatic Elastic Constants of KCl, NaCl, CuZn, Cu, and Al with Pressure to 10,000 Bars , 1949 .

[13]  Charles S. Smith,et al.  PRESSURE DERIVATIVES OF THE ELASTIC CONSTANTS OF COPPER, SILVER, AND GOLD TO 10,000 BARS , 1958 .

[14]  A. Migault Détermination semi-analytique de l'équation d'état des métaux. Application à la détermination de propriétés élastiques et thermodynamiques des métaux sous haute pression , 1971 .

[15]  C. W. Garland,et al.  Elastic Constants of Magnesium from 4.2°K to 300°K , 1957 .