Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies.

[1]  E. Mercuri,et al.  Development of Exon Skipping Therapies for Duchenne Muscular Dystrophy: A Critical Review and a Perspective on the Outstanding Issues , 2017, Nucleic acid therapeutics.

[2]  K. Bushby,et al.  Congenital muscular dystrophies in the UK population: Clinical and molecular spectrum of a large cohort diagnosed over a 12-year period , 2017, Neuromuscular Disorders.

[3]  Daniele Merico,et al.  Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism , 2017, Nature Medicine.

[4]  Shuo Lin,et al.  Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice , 2017, Science Translational Medicine.

[5]  M. Girgenrath,et al.  Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy , 2017, Journal of neuromuscular diseases.

[6]  M. Rüegg,et al.  Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype , 2017, The Journal of clinical investigation.

[7]  J. Rousseau,et al.  Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160 , 2016, Molecular therapy. Nucleic acids.

[8]  R. Fässler,et al.  Integrin-mediated mechanotransduction , 2016, The Journal of cell biology.

[9]  M. Girgenrath,et al.  IGF-1/GH axis enhances losartan treatment in Lama2-related muscular dystrophy. , 2016, Human molecular genetics.

[10]  Liping Yu,et al.  Structural basis of laminin binding to the LARGE glycans on dystroglycan , 2016, Nature chemical biology.

[11]  M. Durbeej,et al.  Bortezomib Does Not Reduce Muscular Dystrophy in the dy2J/dy2J Mouse Model of Laminin α2 Chain-Deficient Muscular Dystrophy , 2016, PloS one.

[12]  L. Tintignac,et al.  Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. , 2015, Physiological reviews.

[13]  Xiwei Shan,et al.  The Extracellular Matrix Protein Laminin α2 Regulates the Maturation and Function of the Blood–Brain Barrier , 2014, The Journal of Neuroscience.

[14]  R. Kiessling,et al.  Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146). , 2014, Matrix biology : journal of the International Society for Matrix Biology.

[15]  F. Muntoni,et al.  Limb girdle muscular dystrophy due to LAMA2 mutations: Diagnostic difficulties due to associated peripheral neuropathy , 2014, Neuromuscular Disorders.

[16]  M. Patarroyo,et al.  Monoclonal antibodies to human laminin α4 chain globular domain inhibit tumor cell adhesion and migration on laminins 411 and 421, and binding of α6β1 integrin and MCAM to α4-laminins. , 2014, Matrix biology : journal of the International Society for Matrix Biology.

[17]  J. Holmberg,et al.  Bortezomib partially improves laminin α2 chain-deficient muscular dystrophy. , 2014, The American journal of pathology.

[18]  J. Ervasti,et al.  Microtubule binding distinguishes dystrophin from utrophin , 2014, Proceedings of the National Academy of Sciences.

[19]  S. Strickland,et al.  Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity , 2014, Nature Communications.

[20]  G. Gao,et al.  The potential of adeno-associated viral vectors for gene delivery to muscle tissue , 2014, Expert opinion on drug delivery.

[21]  Ching H. Wang,et al.  Diagnostic approach to the congenital muscular dystrophies , 2014, Neuromuscular Disorders.

[22]  A. Nakamura,et al.  Highly efficient in vivo delivery of PMO into regenerating myotubes and rescue in laminin-α2 chain-null congenital muscular dystrophy mice , 2013, Human molecular genetics.

[23]  K. Uaesoontrachoon,et al.  Omigapil Treatment Decreases Fibrosis and Improves Respiratory Rate in dy2J Mouse Model of Congenital Muscular Dystrophy , 2013, PloS one.

[24]  J. Mendell,et al.  Gene therapy for muscular dystrophy: Lessons learned and path forward , 2012, Neuroscience Letters.

[25]  Shuo Lin,et al.  Angiotensin II type 1 receptor antagonists alleviate muscle pathology in the mouse model for laminin-α2-deficient congenital muscular dystrophy (MDC1A) , 2012, Skeletal Muscle.

[26]  E. Hohenester,et al.  Crystal Structures of the Network-Forming Short-Arm Tips of the Laminin β1 and γ1 Chains , 2012, PloS one.

[27]  Robert H. Brown,et al.  Homologous Recombination Mediates Functional Recovery of Dysferlin Deficiency following AAV5 Gene Transfer , 2012, PloS one.

[28]  S. Aga-Mizrachi,et al.  Losartan, a therapeutic candidate in congenital muscular dystrophy: Studies in the dy2J/dy2J Mouse , 2012, Annals of neurology.

[29]  R. Wuebbles,et al.  Laminin-111 protein therapy reduces muscle pathology and improves viability of a mouse model of merosin-deficient congenital muscular dystrophy. , 2012, The American journal of pathology.

[30]  Liping Yu,et al.  Dystroglycan Function Requires Xylosyl- and Glucuronyltransferase Activities of LARGE , 2012, Science.

[31]  S. Tapscott,et al.  Immunity and AAV-Mediated Gene Therapy for Muscular Dystrophies in Large Animal Models and Human Trials , 2011, Front. Microbio..

[32]  Shuo Lin,et al.  Apoptosis inhibitors and mini-agrin have additive benefits in congenital muscular dystrophy mice , 2011, EMBO molecular medicine.

[33]  M. Durbeej,et al.  Transgenic expression of Laminin α1 chain does not prevent muscle disease in the mdx mouse model for Duchenne muscular dystrophy. , 2011, The American journal of pathology.

[34]  E. Hohenester,et al.  Determinants of Laminin Polymerisation Revealed by the Crystal Structure of the Alpha5 Chain Amino-Terminal Region , 2011 .

[35]  E. Hohenester,et al.  Determinants of laminin polymerization revealed by the structure of the α5 chain amino-terminal region , 2011, EMBO reports.

[36]  P. Yurchenco Basement membranes: cell scaffoldings and signaling platforms. , 2011, Cold Spring Harbor perspectives in biology.

[37]  M. Steinmetz,et al.  Laminin chain assembly is regulated by specific coiled-coil interactions , 2010, Journal of structural biology.

[38]  P. Barzaghi,et al.  Omigapil Ameliorates the Pathology of Muscle Dystrophy Caused by Laminin-α2 Deficiency , 2009, Journal of Pharmacology and Experimental Therapeutics.

[39]  K. Campbell,et al.  Basal lamina strengthens cell membrane integrity via the laminin G domain-binding motif of α-dystroglycan , 2009, Proceedings of the National Academy of Sciences.

[40]  D. Burkin,et al.  Laminin-111 protein therapy prevents muscle disease in the mdx mouse model for Duchenne muscular dystrophy , 2009, Proceedings of the National Academy of Sciences.

[41]  P. Yurchenco,et al.  Developmental and pathogenic mechanisms of basement membrane assembly. , 2009, Current pharmaceutical design.

[42]  P. Yurchenco,et al.  Scaffold-forming and Adhesive Contributions of Synthetic Laminin-binding Proteins to Basement Membrane Assembly* , 2009, Journal of Biological Chemistry.

[43]  M. Girgenrath,et al.  Pathology is alleviated by doxycycline in a laminin‐α2–null model of congenital muscular dystrophy , 2008, Annals of neurology.

[44]  R. Burgess,et al.  A single point mutation in the LN domain of LAMA2 causes muscular dystrophy and peripheral amyelination , 2008, Journal of Cell Science.

[45]  P. Yurchenco,et al.  Role of Laminin Terminal Globular Domains in Basement Membrane Assembly* , 2007, Journal of Biological Chemistry.

[46]  A. Alkan,et al.  Merosin-Negative Congenital Muscular Dystrophy: Diffusion-Weighted Imaging Findings of Brain , 2007, Journal of child neurology.

[47]  Silke Berger,et al.  The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin α2-deficient congenital muscular dystrophy , 2007, Proceedings of the National Academy of Sciences.

[48]  K. Sekiguchi,et al.  The Requirement of the Glutamic Acid Residue at the Third Position from the Carboxyl Termini of the Laminin γ Chains in Integrin Binding by Laminins* , 2007, Journal of Biological Chemistry.

[49]  P. Barzaghi,et al.  Linker molecules between laminins and dystroglycan ameliorate laminin-α2–deficient muscular dystrophy at all disease stages , 2007, The Journal of cell biology.

[50]  K. Davies,et al.  Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with β-dystroglycan , 2007, The Journal of cell biology.

[51]  Jia-Yi Li,et al.  Laminin alpha1 chain improves laminin alpha2 chain deficient peripheral neuropathy. , 2006, Human molecular genetics.

[52]  K. Sekiguchi,et al.  Ligand-binding specificities of laminin-binding integrins: A comprehensive survey of laminin–integrin interactions using recombinant α3β1, α6β1, α7β1 and α6β4 integrins , 2006 .

[53]  Simon C Watkins,et al.  Amelioration of laminin-alpha2-deficient congenital muscular dystrophy by somatic gene transfer of miniagrin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Sanes,et al.  A simplified laminin nomenclature. , 2005, Matrix biology : journal of the International Society for Matrix Biology.

[55]  P. Barzaghi,et al.  Overexpression of mini‐agrin in skeletal muscle increases muscle integrity and regenerative capacity in laminin‐α2‐deficient mice , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[56]  P. Yurchenco,et al.  Laminin–sulfatide binding initiates basement membrane assembly and enables receptor signaling in Schwann cells and fibroblasts , 2005, The Journal of cell biology.

[57]  Susan C. Brown,et al.  Congenital muscular dystrophy: molecular and cellular aspects , 2005, Cellular and Molecular Life Sciences CMLS.

[58]  L. Sherman,et al.  Coordinate control of axon defasciculation and myelination by laminin-2 and -8 , 2005, The Journal of cell biology.

[59]  S. Takeda,et al.  Laminin α1 chain reduces muscular dystrophy in laminin α2 chain deficient mice , 2004 .

[60]  K. Campbell,et al.  Molecular Recognition by LARGE Is Essential for Expression of Functional Dystroglycan , 2004, Cell.

[61]  P. Barzaghi,et al.  Expression of mouse agrin in normal, denervated and dystrophic muscle , 2003, Neuromuscular Disorders.

[62]  J. Talts,et al.  Beta1 integrin and alpha-dystroglycan binding sites are localized to different laminin-G-domain-like (LG) modules within the laminin alpha5 chain G domain. , 2003, The Biochemical journal.

[63]  E. Engvall,et al.  Laminin α2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice , 2003, Neuromuscular Disorders.

[64]  A. Connolly,et al.  High dose weekly oral prednisone improves strength in boys with Duchenne muscular dystrophy , 2002, Neuromuscular Disorders.

[65]  R. Fässler,et al.  Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation , 2002, The Journal of cell biology.

[66]  A. Pestronk,et al.  Complement 3 deficiency and oral prednisolone improve strength and prolong survival of laminin α2-deficient mice , 2002, Journal of Neuroimmunology.

[67]  R. Timpl,et al.  Complete sequence, recombinant analysis and binding to laminins and sulphated ligands of the N-terminal domains of laminin α3B and α5 chains , 2002 .

[68]  E. Engvall,et al.  An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy , 2001, Nature.

[69]  E. Engvall,et al.  Laminin α2 (merosin)-deficient muscular dystrophy and demyelinating neuropathy in two cats , 2001, Journal of the Neurological Sciences.

[70]  E. Engvall,et al.  Muscular dystrophy in female dogs. , 2001, Journal of veterinary internal medicine.

[71]  R. Timpl,et al.  Structural and Functional Analysis of the Recombinant G Domain of the Laminin α4 Chain and Its Proteolytic Processing in Tissues* , 2000, The Journal of Biological Chemistry.

[72]  P. Yurchenco,et al.  Form and function: The laminin family of heterotrimers , 2000, Developmental dynamics : an official publication of the American Association of Anatomists.

[73]  E. Engvall,et al.  Activation of the lama2 gene in muscle regeneration: abortive regeneration in laminin alpha2-deficiency. , 1999, Laboratory investigation; a journal of technical methods and pathology.

[74]  P. Yurchenco,et al.  The laminin α2 expressed by dystrophic dy2J mice is defective in its ability to form polymers , 1999, Current Biology.

[75]  R. Timpl,et al.  The crystal structure of a laminin G-like module reveals the molecular basis of alpha-dystroglycan binding to laminins, perlecan, and agrin. , 1999, Molecular cell.

[76]  J. Sanes,et al.  Distribution of ten laminin chains in dystrophic and regenerating muscles , 1999, Neuromuscular Disorders.

[77]  I. Shih The role of CD146 (Mel‐CAM) in biology and pathology , 1999, The Journal of pathology.

[78]  R. Timpl,et al.  Binding of the G domains of laminin α1 and α2 chains and perlecan to heparin, sulfatides, α‐dystroglycan and several extracellular matrix proteins , 1999 .

[79]  E. Hoffman,et al.  MR imaging findings in children with merosin-deficient congenital muscular dystrophy. , 1999, AJNR. American journal of neuroradiology.

[80]  M. Grounds,et al.  Expression of Laminin α1, α2, α4, and α5 Chains, Fibronectin, and Tenascin-C in Skeletal Muscle of Dystrophic 129ReJdy/dyMice , 1999 .

[81]  M. Paulsson,et al.  The Targeted Deletion of the LAMC1 Gene , 1998, Annals of the New York Academy of Sciences.

[82]  E. Engvall,et al.  Merosin-deficient congenital muscular dystrophy. Partial genetic correction in two mouse models. , 1998, The Journal of clinical investigation.

[83]  E. Engvall,et al.  Disruption of thelama2Gene in Embryonic Stem Cells: Laminin α2 Is Necessary for Sustenance of Mature Muscle Cells , 1998 .

[84]  R. Kammerer,et al.  Electron microscopic structure of agrin and mapping of its binding site in laminin‐1 , 1998, The EMBO journal.

[85]  M. Ruegg,et al.  Agrin Is a High-affinity Binding Protein of Dystroglycan in Non-muscle Tissue* , 1998, The Journal of Biological Chemistry.

[86]  J. Sanes,et al.  Distribution and Function of Laminins in the Neuromuscular System of Developing, Adult, and Mutant Mice , 1997, The Journal of cell biology.

[87]  R. Burgeson,et al.  Self-assembly of Laminin Isoforms* , 1997, The Journal of Biological Chemistry.

[88]  P. Yurchenco,et al.  Localization of heparin binding activity in recombinant laminin G domain. , 1997, European journal of biochemistry.

[89]  I. Nonaka,et al.  Laminin α2 chain‐null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)‐deficient congenital muscular dystrophy , 1997 .

[90]  M. Ruegg,et al.  Agrin Binds to the Nerve–Muscle Basal Lamina via Laminin , 1997, The Journal of cell biology.

[91]  K. Campbell,et al.  Mild congenital muscular dystrophy in two patients with an internally deleted laminin alpha2-chain. , 1997, Human molecular genetics.

[92]  F. Muntoni,et al.  Late onset muscular dystrophy with cerebral white matter changes due to partial merosin deficiency , 1997, Neuromuscular Disorders.

[93]  E. Mercuri,et al.  Sequential study of central and peripheral nervous system involvement in an infant with merosin-deficient congenital muscular dystrophy , 1996, Neuromuscular Disorders.

[94]  R. Huber,et al.  Site‐directed mutagenesis and structural interpretation of the nidogen binding site of the laminin gamma1 chain. , 1996, The EMBO journal.

[95]  M. Ruegg,et al.  Dystroglycan Is a Dual Receptor for Agrin and Laminin-2 in Schwann Cell Membrane* , 1996, The Journal of Biological Chemistry.

[96]  M. Ruegg,et al.  Alternative Splicing of Agrin Alters Its Binding to Heparin, Dystroglycan, and the Putative Agrin Receptor , 1996, Neuron.

[97]  K. Campbell,et al.  Merosin‐negative congenital muscular dystrophy associated with extensive brain abnormalities , 1995, Neurology.

[98]  F. Muntoni,et al.  Demyelinating Peripheral Neuropathy in Merosin-Deficient Congenital Muscular Dystrophy , 1995, Journal of child neurology.

[99]  A. Utani,et al.  Identification of a novel mutant transcript of laminin alpha 2 chain gene responsible for muscular dystrophy and dysmyelination in dy2J mice. , 1995, Human molecular genetics.

[100]  E. Engvall,et al.  Murine muscular dystrophy caused by a mutation in the laminin α2 (Lama2) gene , 1994, Nature Genetics.

[101]  E. Engvall,et al.  Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[102]  K. Campbell,et al.  Deficiency of merosin in dystrophic dy mice and genetic linkage of laminin M chain gene to dy locus. , 1994, The Journal of biological chemistry.

[103]  P. Yurchenco,et al.  Self-assembly and calcium-binding sites in laminin. A three-arm interaction model. , 1993, The Journal of biological chemistry.

[104]  P. Yurchenco,et al.  Laminin forms an independent network in basement membranes [published erratum appears in J Cell Biol 1992 Jun;118(2):493] , 1992, The Journal of cell biology.

[105]  H. Wiedemann,et al.  Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. , 1991, The EMBO journal.

[106]  E. Tsilibary,et al.  Laminin polymerization in vitro. Evidence for a two-step assembly with domain specificity. , 1985, The Journal of biological chemistry.

[107]  J. Southard,et al.  Muscular dystrophy in the mouse caused by an allele at the dy-locus. , 1970, Life sciences.

[108]  W. Silvers,et al.  New Genetically Homogeneous Background for Dystrophic Mice and Their Normal Counterparts , 1962, Science.

[109]  E. Russell,et al.  Dystrophia Muscularis: A HEREDITARY PRIMARY MYOPATHY IN THE HOUSE MOUSE. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[110]  J. Uitto,et al.  Molecular pathology of the basement membrane zone in heritable blistering diseases:: The paradigm of epidermolysis bullosa. , 2017, Matrix biology : journal of the International Society for Matrix Biology.

[111]  H. Nishimune,et al.  The role of laminins in the organization and function of neuromuscular junctions. , 2017, Matrix biology : journal of the International Society for Matrix Biology.

[112]  A. Pozzi,et al.  The nature and biology of basement membranes. , 2017, Matrix biology : journal of the International Society for Matrix Biology.

[113]  James M. Allen,et al.  Gene therapy of mdx mice with large truncated dystrophins generated by recombination using rAAV6. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[114]  R. Timpl,et al.  Complete sequence, recombinant analysis and binding to laminins and sulphated ligands of the N-terminal domains of laminin alpha3B and alpha5 chains. , 2002, The Biochemical journal.