Reactive self-tracking solar concentrators: concept, design, and initial materials characterization.

Étendue limits angular acceptance of high-concentration photovoltaic systems and imposes precise two-axis mechanical tracking. We show how a planar micro-optic solar concentrator incorporating a waveguide cladding with a nonlinear optical response to sunlight can reduce mechanical tracking requirements. Optical system designs quantify the required response: a large, slow, and localized increase in index of refraction. We describe one candidate materials system: a suspension of high-index particles in a low-index fluid combined with a localized space-charge field to increase particle density and average index. Preliminary experiments demonstrate an index change of aqueous polystyrene nanoparticles in response to a low voltage signal and imply larger responses with optimized nanofluidic materials.

[1]  Duncan T. Moore,et al.  Dimpled Planar Lightguide Solar Concentrators , 2010 .

[2]  M.C. Wu,et al.  Operational Regimes and Physics Present in Optoelectronic Tweezers , 2008, Journal of Microelectromechanical Systems.

[3]  V. E. Semenov,et al.  Formation of soliton-like light beams in an aqueous suspension of polystyrene particles , 2005 .

[4]  Joseph E. Ford,et al.  Planar micro-optic solar concentrator. , 2010, Optics express.

[5]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[6]  Joseph E. Ford,et al.  Orthogonal and secondary concentration in planar micro-optic solar collectors. , 2011, Optics express.

[7]  E. Wright,et al.  Nonlinear optical response of colloidal suspensions. , 2009, Optics express.

[8]  Ari Rabl,et al.  Active solar collectors and their applications , 1985 .

[9]  Justin M. Hallas,et al.  Lateral translation micro-tracking of planar micro-optic solar concentrator , 2010, Optics + Photonics for Sustainable Energy.

[10]  L. Guo,et al.  High‐Speed Roll‐to‐Roll Nanoimprint Lithography on Flexible Plastic Substrates , 2008 .

[11]  Sen-Yue Yang,et al.  A roller embossing process for rapid fabrication of microlens arrays on glass substrates , 2006 .

[12]  Next-generation multijunction solar cells: The promise of II-VI materials , 2011 .

[13]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[14]  P W Smith,et al.  Continuous-wave self-focusing and self-trapping of light in artificial Kerr media. , 1982, Optics letters.

[15]  H. A. Pohl The Motion and Precipitation of Suspensoids in Divergent Electric Fields , 1951 .

[16]  M. Symko-Davies,et al.  Progress of the Photovoltaic Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base: Preprint , 2011 .

[17]  Hugo Thienpont,et al.  Tracking integration in concentrating photovoltaics using laterally moving optics. , 2011, Optics express.

[18]  R. Norwood,et al.  Titanium oxide sol-gel films with tunable refractive index , 2011 .

[19]  J. Lambe,et al.  Luminescent greenhouse collector for solar radiation. , 1976, Applied optics.

[20]  H. Du,et al.  Rapid Concentration of Nanoparticles with DC Dielectrophoresis in Focused Electric Fields , 2009, Nanoscale research letters.

[21]  David Sinton,et al.  Particle-optical self-trapping , 2007 .

[22]  Timothy D Heidel,et al.  High-Efficiency Organic Solar Concentrators for Photovoltaics , 2008, Science.

[23]  S. Kurtz,et al.  Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry (Revision) , 2012 .

[24]  Stuart J. Williams,et al.  Electrokinetic patterning of colloidal particles with optical landscapes. , 2008, Lab on a chip.

[25]  约翰·保罗·摩根 Light-guide solar panel and method of fabrication thereof , 2008 .