The importance of thermodynamics for molecular systems, and the importance of molecular systems for thermodynamics

Improved understanding of molecular systems has only emphasised the sophistication of networks within the cell. Simultaneously, the advance of nucleic acid nanotechnology, a platform within which reactions can be exquisitely controlled, has made the development of artificial architectures and devices possible. Vital to this progress has been a solid foundation in the thermodynamics of molecular systems. In this pedagogical review and perspective, we discuss how thermodynamics determines both the overall potential of molecular networks, and the minute details of design. We then argue that, in turn, the need to understand molecular systems is helping to drive the development of theories of thermodynamics at the microscopic scale.

[1]  Erik Winfree,et al.  Thermodynamic Analysis of Interacting Nucleic Acid Strands , 2007, SIAM Rev..

[2]  M. Khammash,et al.  Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular Networks. , 2016, Cell systems.

[3]  Ankit Gupta,et al.  Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular Networks. , 2014, Cell systems.

[4]  Filipe Tostevin,et al.  A stochastic model of Min oscillations in Escherichia coli and Min protein segregation during cell division , 2005, Physical biology.

[5]  Pieter Rein Ten Wolde,et al.  Optimal resource allocation in cellular sensing systems , 2014, Proceedings of the National Academy of Sciences.

[6]  David Baker,et al.  Accurate design of megadalton-scale two-component icosahedral protein complexes , 2016, Science.

[7]  Lulu Qian,et al.  Efficient Turing-Universal Computation with DNA Polymers , 2010, DNA.

[8]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[9]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[10]  John D. Norton Waiting for Landauer , 2010 .

[11]  Geoff S. Baldwin Synthetic Biology — A Primer , 2012 .

[12]  Olli Ikkala,et al.  Switchable Static and Dynamic Self-Assembly of Magnetic Droplets on Superhydrophobic Surfaces , 2013, Science.

[13]  Yuhai Tu,et al.  The energy-speed-accuracy tradeoff in sensory adaptation , 2012, Nature Physics.

[14]  Pablo Sartori,et al.  Thermodynamics of Error Correction , 2015, 1504.06407.

[15]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[16]  A. Turberfield,et al.  Programmable energy landscapes for kinetic control of DNA strand displacement , 2014, Nature Communications.

[17]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[18]  P. R. ten Wolde,et al.  Biochemical Machines for the Interconversion of Mutual Information and Work. , 2017, Physical review letters.

[19]  Richard A. Muscat,et al.  A programmable molecular robot. , 2011, Nano letters.

[20]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[21]  David H. Mathews,et al.  NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure , 2009, Nucleic Acids Res..

[22]  Sosuke Ito,et al.  Maxwell's demon in biochemical signal transduction with feedback loop , 2014, Nature Communications.

[23]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[24]  David Baker,et al.  Design of a hyperstable 60-subunit protein icosahedron , 2016, Nature.

[25]  M. Saraste,et al.  FEBS Lett , 2000 .

[26]  Irving M. Klotz,et al.  Symposia of the Society for Experimental Biology , 1952, The Yale Journal of Biology and Medicine.

[27]  C. Jarzynski,et al.  Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies , 2005, Nature.

[28]  M. Radosavljevic,et al.  Biological Physics: Energy, Information, Life , 2003 .

[29]  Suriyanarayanan Vaikuntanathan,et al.  Design principles for nonequilibrium self-assembly , 2015, Proceedings of the National Academy of Sciences.

[30]  M. Bennett,et al.  A fast, robust, and tunable synthetic gene oscillator , 2008, Nature.

[31]  Udo Seifert,et al.  Thermodynamic uncertainty relation for biomolecular processes. , 2015, Physical review letters.

[32]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[33]  D. Andrieux,et al.  Nonequilibrium generation of information in copolymerization processes , 2008, Proceedings of the National Academy of Sciences.

[34]  T. Ouldridge Inferring bulk self-assembly properties from simulations of small systems with multiple constituent species and small systems in the grand canonical ensemble. , 2012, The Journal of chemical physics.

[35]  Pieter Rein ten Wolde,et al.  Thermodynamics of Computational Copying in Biochemical Systems , 2015, 1503.00909.

[36]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[37]  Maclyn McCarty,et al.  STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES , 1944, The Journal of experimental medicine.

[38]  P. Yin,et al.  A DNAzyme that walks processively and autonomously along a one-dimensional track. , 2005, Angewandte Chemie.

[40]  T. L. Hill,et al.  Free Energy Transduction and Biochemical Cycle Kinetics , 1988, Springer New York.

[41]  P. Gaspard Growth and Dissolution of Macromolecular Markov Chains , 2016, 1604.08011.

[42]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[43]  Harry M. T. Choi,et al.  Programming biomolecular self-assembly pathways , 2008, Nature.

[44]  J. Sumner THE ISOLATION AND CRYSTALLIZATION OF THE ENZYME UREASE PRELIMINARY PAPER , 1926 .

[45]  Christopher Jarzynski,et al.  Work and information processing in a solvable model of Maxwell’s demon , 2012, Proceedings of the National Academy of Sciences.

[46]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[47]  J. Collins,et al.  Toehold Switches: De-Novo-Designed Regulators of Gene Expression , 2014, Cell.

[48]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[49]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[50]  D. Gillespie,et al.  Deterministic limit of stochastic chemical kinetics. , 2009, The journal of physical chemistry. B.

[51]  Teruo Fujii,et al.  Predator-prey molecular ecosystems. , 2013, ACS nano.

[52]  A. C. Barato,et al.  Universal bound on the efficiency of molecular motors , 2016, 1609.08046.

[53]  Antonio Celani,et al.  Multiple-scale stochastic processes: Decimation, averaging and beyond , 2016, 1612.04999.

[54]  S. Doniach Biological Physics: Energy, Information, Life , 2003 .

[55]  K. Dill,et al.  The Protein-Folding Problem, 50 Years On , 2012, Science.

[56]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[57]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[58]  M. Perutz,et al.  Structure of hemoglobin. , 1960, Brookhaven symposia in biology.

[59]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[60]  Jonathan Bath,et al.  An autonomous molecular assembler for programmable chemical synthesis. , 2016, Nature chemistry.

[61]  J. Ninio Kinetic amplification of enzyme discrimination. , 1975, Biochimie.

[62]  J. Doye,et al.  Extracting bulk properties of self-assembling systems from small simulations , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[63]  David J Schwab,et al.  Energetic costs of cellular computation , 2012, Proceedings of the National Academy of Sciences.

[64]  A. Turberfield,et al.  Direct observation of stepwise movement of a synthetic molecular transporter. , 2011, Nature nanotechnology.

[65]  M. Perutz,et al.  Structure Of Hæemoglobin: A Three-Dimensional Fourier Synthesis of Reduced Human Haemoglobin at 5.5 Å Resolution , 1963, Nature.

[66]  Richard A. Muscat,et al.  DNA nanotechnology from the test tube to the cell. , 2015, Nature nanotechnology.

[67]  F. Crick,et al.  Molecular structure of nucleic acids , 2004, JAMA.

[68]  A. Turberfield,et al.  A free-running DNA motor powered by a nicking enzyme. , 2005, Angewandte Chemie.

[69]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[70]  Iain G. Johnston,et al.  Modelling the self-assembly of virus capsids , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[71]  Chris Thachuk,et al.  Logically and Physically Reversible Natural Computing: A Tutorial , 2013, RC.

[72]  Luca Cardelli,et al.  Programmable chemical controllers made from DNA. , 2013, Nature nanotechnology.

[73]  J. Willard Gibbs,et al.  The scientific papers of J. Willard Gibbs , 1907 .

[74]  Georg Seelig,et al.  Molecular circuits for dynamic noise filtering , 2016, Proceedings of the National Academy of Sciences.

[75]  O. Avery,et al.  STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES , 1944, The Journal of experimental medicine.

[76]  Luca Cardelli,et al.  Abstractions for DNA circuit design , 2011, Journal of The Royal Society Interface.

[77]  Jeremy L. England,et al.  Statistical physics of self-replication. , 2012, The Journal of chemical physics.

[78]  Udo Seifert,et al.  Universal bounds on current fluctuations. , 2015, Physical review. E.

[79]  O. J. E. Maroney The (absence of a) relationship between thermodynamic and logical reversibility , 2004 .

[80]  D. Frenkel,et al.  Numerical evidence for nucleated self-assembly of DNA brick structures. , 2014, Physical review letters.

[81]  Hong Qian,et al.  Phosphorylation energy hypothesis: open chemical systems and their biological functions. , 2007, Annual review of physical chemistry.

[82]  Christopher Jarzynski,et al.  Maxwell's refrigerator: an exactly solvable model. , 2013, Physical review letters.

[83]  K. Dill,et al.  The protein folding problem. , 1993, Annual review of biophysics.

[84]  Marta Kwiatkowska,et al.  Modelling DNA origami self-assembly at the domain level. , 2015, The Journal of chemical physics.

[85]  J. Keasling,et al.  Synthetic and systems biology for microbial production of commodity chemicals , 2016, npj Systems Biology and Applications.

[86]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[87]  Yonggun Jun,et al.  High-precision test of Landauer's principle in a feedback trap. , 2014, Physical review letters.

[88]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[89]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[90]  A. Turberfield,et al.  DNA fuel for free-running nanomachines. , 2003, Physical review letters.

[91]  Niles A. Pierce,et al.  Next-Generation in Situ Hybridization Chain Reaction: Higher Gain, Lower Cost, Greater Durability , 2014, ACS nano.

[92]  A. Turberfield,et al.  Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. , 2008, Physical review letters.

[93]  P. Schuster,et al.  RNA folding at elementary step resolution. , 1999, RNA.

[94]  Richard I. Kitney,et al.  Synthetic Biology — A Primer , 2012 .

[95]  James Ladyman,et al.  The connection between logical and thermodynamic irreversibility , 2007 .

[96]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[97]  P. Gräber,et al.  Free Energy Transduction and Biochemical Cycle Kinetics. , 1990 .

[98]  Isaac Meilijson,et al.  Genome-Scale Analysis of Translation Elongation with a Ribosome Flow Model , 2011, PLoS Comput. Biol..

[99]  T. Ouldridge,et al.  Fundamental Costs in the Production and Destruction of Persistent Polymer Copies. , 2016, Physical review letters.

[100]  T. Sulchek,et al.  Enhanced stochastic fluctuations to measure steep adhesive energy landscapes , 2016, Proceedings of the National Academy of Sciences.

[101]  David J. Schwab,et al.  Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks , 2015, bioRxiv.

[102]  Amin Espah Borujeni,et al.  Translation Initiation is Controlled by RNA Folding Kinetics via a Ribosome Drafting Mechanism. , 2016, Journal of the American Chemical Society.

[103]  C. J. Adkins An introduction to thermal physics , 1987 .

[104]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[105]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[106]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[107]  Ho-Lin Chen,et al.  Deterministic function computation with chemical reaction networks , 2012, Natural Computing.

[108]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[109]  Noel A. Clark,et al.  End-to-End Stacking and Liquid Crystal Condensation of 6– to 20–Base Pair DNA Duplexes , 2007, Science.

[110]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[111]  Anne Condon,et al.  Space and Energy Efficient Computation with DNA Strand Displacement Systems , 2012, DNA.

[112]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[113]  Stefan Hilbert,et al.  Consistent thermostatistics forbids negative absolute temperatures , 2013, Nature Physics.

[114]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[115]  M. A. Cayless Statistical Mechanics (2nd edn) , 1977 .

[116]  S. Teichmann,et al.  Principles of assembly reveal a periodic table of protein complexes , 2015, Science.

[117]  Andre C. Barato,et al.  Efficiency of cellular information processing , 2014, 1405.7241.

[118]  J. SantaLucia,et al.  The thermodynamics of DNA structural motifs. , 2004, Annual review of biophysics and biomolecular structure.

[119]  G. J. Mulder Ueber die Zusammensetzung einiger thierischen Substanzen , 1839 .

[120]  Lauren K. Wolf,et al.  Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison , 2006, Nucleic acids research.

[121]  Arvind Murugan,et al.  Undesired usage and the robust self-assembly of heterogeneous structures , 2015, Nature Communications.

[122]  A. Turberfield,et al.  Mechanism for a directional, processive, and reversible DNA motor. , 2009, Small.

[123]  M. Tuckerman Statistical Mechanics: Theory and Molecular Simulation , 2010 .

[124]  T. G. Martin,et al.  Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature , 2012, Science.

[125]  J. Yeomans,et al.  Statistical mechanics of phase transitions , 1992 .

[126]  Joseph M. Schaeffer,et al.  On the biophysics and kinetics of toehold-mediated DNA strand displacement , 2013, Nucleic acids research.

[127]  E. Cino,et al.  Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations , 2012, Journal of chemical theory and computation.

[128]  M. Woodside,et al.  Reconstructing folding energy landscape profiles from nonequilibrium pulling curves with an inverse Weierstrass integral transform. , 2014, Physical review letters.

[129]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[130]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[131]  E. Xie,et al.  Direct visualization of transient thermal response of a DNA origami. , 2012, Journal of the American Chemical Society.

[132]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[133]  Lorenzo Rovigatti,et al.  Coarse-graining DNA for simulations of DNA nanotechnology. , 2013, Physical chemistry chemical physics : PCCP.

[134]  F. J. Luque,et al.  Theoretical methods for the simulation of nucleic acids. , 2003, Chemical Society reviews.

[135]  Russell P. Goodman,et al.  Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication , 2005, Science.

[136]  Liam P. Shaw,et al.  DNA hairpins destabilize duplexes primarily by promoting melting rather than by inhibiting hybridization , 2015, Nucleic acids research.

[137]  Matt A. King,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012 .

[138]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[139]  A. Turberfield,et al.  Guiding the folding pathway of DNA origami , 2015, Nature.

[140]  Ludwig Boltzmann,et al.  Lectures on Gas Theory , 1964 .

[141]  Pieter Rein ten Wolde,et al.  Energy dissipation and noise correlations in biochemical sensing. , 2014, Physical review letters.

[142]  Mikuláš Teich,et al.  A documentary history of biochemistry, 1770-1940 , 1991 .

[143]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[144]  S. Wereley,et al.  soft matter , 2019, Science.

[145]  Gabriela Koreisová,et al.  Scientific Papers , 1997, Nature.

[146]  Journal of Chemical Physics , 1932, Nature.

[147]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[148]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[149]  Lulu Qian,et al.  Programmable disorder in random DNA tilings. , 2017, Nature nanotechnology.

[150]  F. Sciortino,et al.  Self-assembly of short DNA duplexes: from a coarse-grained model to experiments through a theoretical link , 2012, 1204.0985.

[151]  U. Seifert Stochastic thermodynamics of single enzymes and molecular motors , 2010, The European physical journal. E, Soft matter.

[152]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[153]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[154]  Paul Freemont,et al.  Synthetic biology – the state of play , 2012, FEBS letters.

[155]  H. Fraenkel-conrat,et al.  RECONSTITUTION OF ACTIVE TOBACCO MOSAIC VIRUS FROM ITS INACTIVE PROTEIN AND NUCLEIC ACID COMPONENTS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[156]  Jing Pan,et al.  A synthetic DNA motor that transports nanoparticles along carbon nanotubes. , 2014, Nature nanotechnology.

[157]  Sadi Carnot,et al.  Reflections on the Motive Power of Fire: And Other Papers on the Second Law of Thermodynamics , 2005 .

[158]  Erik Winfree,et al.  Stochastic Simulation of the Kinetics of Multiple Interacting Nucleic Acid Strands , 2015, DNA.

[159]  Dexter Kozen,et al.  New , 2020, MFPS.

[160]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[161]  J. Hopfield Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[162]  David Soloveichik,et al.  Probability 1 Computation with Chemical Reaction Networks , 2014, DNA.

[163]  U. Alon An introduction to systems biology : design principles of biological circuits , 2019 .

[164]  Udo Seifert Entropy production along a stochastic trajectory and an integral fluctuation theorem. , 2005, Physical review letters.

[165]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[166]  Joris Paijmans,et al.  A thermodynamically consistent model of the post-translational Kai circadian clock , 2016, PLoS Comput. Biol..