Optimization of variance-stabilizing transformations
暂无分享,去创建一个
[1] M. Tweedie,et al. Variance‐Stabilizing Transformation of a Poisson Variate by a Beta Function , 1971 .
[2] H. Arsenault,et al. Integral expression for transforming signal-dependent noise into signal-independent noise. , 1981, Optics letters.
[3] N. Laubscher,et al. On Stabilizing the Binomial and Negative Binomial Variances , 1961 .
[4] Alessandro Foi,et al. Clipped noisy images: Heteroskedastic modeling and practical denoising , 2009, Signal Process..
[5] Box-Cox transformations and a heteroscedastic error variance: import demand equations revisited , 1985 .
[6] Mohamed-Jalal Fadili,et al. Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal , 2008, IEEE Transactions on Image Processing.
[7] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[8] E. Kolaczyk. Nonparametric Estimation of Gamma-Ray Burst Intensities Using Haar Wavelets , 1997 .
[9] J. Curtiss. On Transformations Used in the Analysis of Variance , 1943 .
[10] Karen O. Egiazarian,et al. Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data , 2008, IEEE Transactions on Image Processing.
[11] Bradley Efron. Transformation Theory: How Normal is a Family of Distributions? , 1982 .
[12] R. Tibshirani. Estimating Transformations for Regression via Additivity and Variance Stabilization , 1988 .
[13] Fionn Murtagh,et al. Image Processing and Data Analysis: Preface , 1998 .
[14] J. Tukey,et al. Transformations Related to the Angular and the Square Root , 1950 .
[15] R. Sakia. The Box-Cox transformation technique: a review , 1992 .
[16] J F Walkup,et al. Image restoration by transformation of signal-dependent noise to signal-independent noise. , 1983, Applied optics.
[17] Tamara G. Kolda,et al. Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..
[18] 2—STATISTICAL METHODS IN TEXTILE RESEARCH. PART 2—USES OF THE BINOMIAL AND POISSON DISTRIBUTIONS , 1935 .
[19] Variance stabilization for a scalar parameter , 2006 .
[20] G. Nason,et al. A Haar-Fisz Algorithm for Poisson Intensity Estimation , 2004 .
[21] E. Kolaczyk. WAVELET SHRINKAGE ESTIMATION OF CERTAIN POISSON INTENSITY SIGNALS USING CORRECTED THRESHOLDS , 1999 .
[22] G. Nason,et al. A multiscale variance stabilization for binomial sequence proportion estimation , 2009 .
[23] F. J. Anscombe,et al. THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .
[24] M. Bartlett. The Square Root Transformation in Analysis of Variance , 1936 .
[25] Thomas W. Parks,et al. Image denoising using total least squares , 2006, IEEE Transactions on Image Processing.
[26] Guan Yu,et al. Variance stabilizing transformations of Poisson, binomial and negative binomial distributions , 2009 .
[27] Katya Scheinberg,et al. Introduction to derivative-free optimization , 2010, Math. Comput..
[28] C. T. Kelley,et al. Detection and Remediation of Stagnation in the Nelder--Mead Algorithm Using a Sufficient Decrease Condition , 1999, SIAM J. Optim..
[29] Piotr Fryzlewicz,et al. Data-driven wavelet-Fisz methodology for nonparametric function estimation , 2007, 0711.0883.
[30] V. Delouille,et al. A data-driven HAAR-FISZ transform for multiscale variance stabilization , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.
[31] J. Adell,et al. The median of the poisson distribution , 2005 .
[32] B E Saleh,et al. Transformation of image-signal-dependent noise into image-signal-independent noise. , 1981, Optics letters.
[33] R. A. Silverman,et al. Introductory Real Analysis , 1972 .
[34] M. Jansen. Multiscale Poisson data smoothing , 2006 .