Optimization of variance-stabilizing transformations

Variance-stabilizing transformations are commonly exploited in order to make non-homoskedastic data easily tractable by standard methods. However, for the most common families of distributions (e.g., binomial, Poisson, etc.) exact stabilization is not possible and even achieving some approximate stabilization turns out to be rather challenging. We approach the variance stabilization problem as an explicit optimization problem and propose recursive procedures to minimize a nonlinear stabilization functional that measures the discrepancy between the standard deviation of the transformed variables and a xed desired constant. Further, we relax the typical requirement of monotonicity of the transformation and introduce optimized nonmonotone stabilizers which are nevertheless invertible in terms of expectations. We demonstrate a number of optimized variancestabilizing transformations for the most common distribution families. These stabilizers are shown to outperform the existing ones. In particular, optimized variance-stabilizing transformations for low-count Poisson, binomial, and negative-binomial data are presented.

[1]  M. Tweedie,et al.  Variance‐Stabilizing Transformation of a Poisson Variate by a Beta Function , 1971 .

[2]  H. Arsenault,et al.  Integral expression for transforming signal-dependent noise into signal-independent noise. , 1981, Optics letters.

[3]  N. Laubscher,et al.  On Stabilizing the Binomial and Negative Binomial Variances , 1961 .

[4]  Alessandro Foi,et al.  Clipped noisy images: Heteroskedastic modeling and practical denoising , 2009, Signal Process..

[5]  Box-Cox transformations and a heteroscedastic error variance: import demand equations revisited , 1985 .

[6]  Mohamed-Jalal Fadili,et al.  Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal , 2008, IEEE Transactions on Image Processing.

[7]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[8]  E. Kolaczyk Nonparametric Estimation of Gamma-Ray Burst Intensities Using Haar Wavelets , 1997 .

[9]  J. Curtiss On Transformations Used in the Analysis of Variance , 1943 .

[10]  Karen O. Egiazarian,et al.  Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data , 2008, IEEE Transactions on Image Processing.

[11]  Bradley Efron Transformation Theory: How Normal is a Family of Distributions? , 1982 .

[12]  R. Tibshirani Estimating Transformations for Regression via Additivity and Variance Stabilization , 1988 .

[13]  Fionn Murtagh,et al.  Image Processing and Data Analysis: Preface , 1998 .

[14]  J. Tukey,et al.  Transformations Related to the Angular and the Square Root , 1950 .

[15]  R. Sakia The Box-Cox transformation technique: a review , 1992 .

[16]  J F Walkup,et al.  Image restoration by transformation of signal-dependent noise to signal-independent noise. , 1983, Applied optics.

[17]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[18]  2—STATISTICAL METHODS IN TEXTILE RESEARCH. PART 2—USES OF THE BINOMIAL AND POISSON DISTRIBUTIONS , 1935 .

[19]  Variance stabilization for a scalar parameter , 2006 .

[20]  G. Nason,et al.  A Haar-Fisz Algorithm for Poisson Intensity Estimation , 2004 .

[21]  E. Kolaczyk WAVELET SHRINKAGE ESTIMATION OF CERTAIN POISSON INTENSITY SIGNALS USING CORRECTED THRESHOLDS , 1999 .

[22]  G. Nason,et al.  A multiscale variance stabilization for binomial sequence proportion estimation , 2009 .

[23]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[24]  M. Bartlett The Square Root Transformation in Analysis of Variance , 1936 .

[25]  Thomas W. Parks,et al.  Image denoising using total least squares , 2006, IEEE Transactions on Image Processing.

[26]  Guan Yu,et al.  Variance stabilizing transformations of Poisson, binomial and negative binomial distributions , 2009 .

[27]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[28]  C. T. Kelley,et al.  Detection and Remediation of Stagnation in the Nelder--Mead Algorithm Using a Sufficient Decrease Condition , 1999, SIAM J. Optim..

[29]  Piotr Fryzlewicz,et al.  Data-driven wavelet-Fisz methodology for nonparametric function estimation , 2007, 0711.0883.

[30]  V. Delouille,et al.  A data-driven HAAR-FISZ transform for multiscale variance stabilization , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[31]  J. Adell,et al.  The median of the poisson distribution , 2005 .

[32]  B E Saleh,et al.  Transformation of image-signal-dependent noise into image-signal-independent noise. , 1981, Optics letters.

[33]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[34]  M. Jansen Multiscale Poisson data smoothing , 2006 .