Finding small regular graphs of girths 6, 8 and 12 as subgraphs of cages

Small k-regular graphs of girth g where g=6,8,12 are obtained as subgraphs of minimal cages. More precisely, we obtain (k,6)-graphs on 2(kq-1) vertices, (k,8)-graphs on 2k(q^2-1) vertices and (k,12)-graphs on 2kq^2(q^2-1), where q is a prime power and k is a positive integer such that q>=k>=3. Some of these graphs have the smallest number of vertices known so far among the regular graphs with girth g=6,8,12.

[1]  M. O'Keefe,et al.  The smallest graph of girth 6 and valency 7 , 1981, J. Graph Theory.

[2]  P Salvador,et al.  VECTOR-VALUED HARMONIC FUNCTIONS IN NON-SMOOTH DOMAINS , 2006 .

[3]  Manuel González-Burgos,et al.  Some results on controllability for linear and nonlinear heat equations in unbounded domains , 2007, Advances in Differential Equations.

[4]  José Antonio de la Peña,et al.  Trisections of module categories , 2007 .

[5]  Mika Olsen,et al.  A conjecture of Neumann-Lara on infinite families of r-dichromatic circulant tournaments , 2010, Discret. Math..

[6]  Geoffrey Exoo A Simple Method for Constructing Small Cubic Graphs of Girths 14, 15, and 16 , 1996, Electron. J. Comb..

[7]  P. K. Wong A REGULAR GRAPH OF GIRTH 6 AND VALENCY 11 , 1986 .

[8]  Ciudad Universitaria,et al.  On the Growth of the Coxeter Transformations of Derived-Hereditary Algebras , 2007 .

[9]  Dragan Marusic,et al.  The 10-cages and derived configurations , 2004, Discret. Math..

[10]  Juan José Montellano-Ballesteros,et al.  On upper bounds and connectivity of cages , 2007, Australas. J Comb..

[11]  Ricardo Strausz,et al.  Erdös-Szekeres "happy end"-type theorems for separoïds , 2008, Eur. J. Comb..

[12]  G. Exoo,et al.  Dynamic Cage Survey , 2011 .

[13]  Derek Allan Holton,et al.  The Petersen graph , 1993, Australian mathematical society lecture series.

[14]  Brendan D. McKay,et al.  The Smallest Cubic Graphs of Girth Nine , 1995, Combinatorics, Probability and Computing.

[15]  Camino Balbuena,et al.  Constructions of bi-regular cages , 2009, Discret. Math..

[16]  José Antonio de la Peña,et al.  Extended canonical algebras and Fuchsian singularities , 2006 .

[17]  Javier Bracho,et al.  Two geometric representation theorems for separoids , 2006, Period. Math. Hung..

[18]  Filomena Pacella,et al.  Multiple solutions to the pure critical exponent problem in domains with a hole of arbitrary size , 2008 .

[19]  Camino Balbuena,et al.  A construction of small regular bipartite graphs of girth 8 , 2009 .

[20]  András Gács,et al.  On geometric constructions of (k, g)-graphs , 2008, Contributions Discret. Math..

[21]  Helmut Lenzing,et al.  A Chebysheff recursion formula for Coxeter polynomials , 2006, math/0611535.

[22]  Camino Balbuena,et al.  Incidence Matrices of Projective Planes and of Some Regular Bipartite Graphs of Girth 6 with Few Vertices , 2008, SIAM J. Discret. Math..

[23]  Pak-Ken Wong,et al.  Cages - a survey , 1982, J. Graph Theory.

[24]  Markus Meringer,et al.  Fast generation of regular graphs and construction of cages , 1999, J. Graph Theory.

[25]  Walter Feit,et al.  The nonexistence of certain generalized polygons , 1964 .

[26]  Marcelo A. Aguilar,et al.  Equivariant homotopical homology with coefficients in a Mackey functor , 2007 .

[27]  Vito Napolitano,et al.  Íëìêêääëááae Âçíêaeaeä Ç Çååáaeaeìçêááë Îóðùññ ¿½´¾¼¼¼µ¸è× ½½½ß¾¼¼ , 2022 .

[28]  Manuel González-Burgos,et al.  Controllability results for cascade systems of m coupled parabolic PDEs by one control force , 2010 .

[29]  A. Barlotti,et al.  Combinatorics of Finite Geometries , 1975 .

[30]  José Antonio de la Peña,et al.  On minimal non-tilted algebras , 2008 .

[31]  Hortensia Galeana-Sánchez,et al.  Kernels and cycles' subdivisions in arc-colored tournaments , 2009, Discuss. Math. Graph Theory.

[32]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[33]  H. Sachs,et al.  Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .

[34]  Norman Biggs,et al.  Constructions for Cubic Graphs with Large Girth , 1998, Electron. J. Comb..

[35]  Felix Lazebnik,et al.  New upper bounds on the order of cages , 1996, Electron. J. Comb..

[36]  Ricardo Gómez,et al.  A Family of Heat Functions as Solutions of Indeterminate Moment Problems , 2007, Int. J. Math. Math. Sci..

[37]  M. O'Keefe,et al.  A smallest graph of girth 5 and valency 6 , 1979, J. Comb. Theory, Ser. B.

[38]  Juan Rada,et al.  On the multiplicity of the eigenvalues of a graph , 2007 .

[39]  C. T. Benson Minimal Regular Graphs of Girths Eight and Twelve , 1966, Canadian Journal of Mathematics.

[40]  José Antonio de la Peña,et al.  The fundamental group and Galois coverings of hexagonal systems in 3-space , 2006, Int. J. Math. Math. Sci..

[41]  Juan José Montellano-Ballesteros,et al.  On conjectures of Frankl and El‐Zahar , 2008, J. Graph Theory.

[42]  Marcos Lopez-Garc ´ õa,et al.  Bloch-type space of temperature functions on a finite cylinder , 2007 .

[43]  Doron Zeilberger,et al.  The Number of [Old-Time] Basketball Games with Final Score n:n where the Home Team was Never Losing but also Never Ahead by More Than w Points , 2007, Electron. J. Comb..

[44]  Claudio Munoz,et al.  Singular limits for the bi-laplacian operator with exponential nonlinearity in $\R^4$ , 2007, 0709.2878.

[45]  Alejandro Illanes,et al.  A tree-like continuum whose cone admits a fixed-point-free map , 2007 .

[46]  J. A. Peña,et al.  Estimating the Estrada index , 2007 .

[47]  S. M. Voronin,et al.  Analytic Normal Forms of Germs of Holomorphic Dicritic Foliations , 2008 .

[48]  W. T. Tutte A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[49]  M. O’KEEFE,et al.  A smallest graph of girth 10 and valency 3 , 1980, J. Comb. Theory, Ser. B.

[50]  E. Bannai,et al.  On finite Moore graphs , 1973 .