Molecular Gas and Star Formation in Nearby Starburst Galaxy Mergers

We employ the Feedback In Realistic Environments (FIRE-2) physics model to study how the properties of giant molecular clouds (GMCs) evolve during galaxy mergers. We conduct a pixel-by-pixel analysis of molecular gas properties in both the simulated control galaxies and galaxy major mergers. The simulated GMC pixels in the control galaxies follow a similar trend in a diagram of velocity dispersion (σ v ) versus gas surface density (Σmol) to the one observed in local spiral galaxies in the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) survey. For GMC pixels in simulated mergers, we see a significant increase of a factor of 5–10 in both Σmol and σ v , which puts these pixels above the trend of PHANGS galaxies in the σ v versus Σmol diagram. This deviation may indicate that GMCs in the simulated mergers are much less gravitationally bound compared with simulated control galaxies with virial parameters (α vir) reaching 10–100. Furthermore, we find that the increase in α vir happens at the same time as the increase in global star formation rate, which suggests that stellar feedback is responsible for dispersing the gas. We also find that the gas depletion time is significantly lower for high-α vir GMCs during a starburst event. This is in contrast to the simple physical picture that low-α vir GMCs are easier to collapse and form stars on shorter depletion times. This might suggest that some other physical mechanisms besides self-gravity are helping the GMCs in starbursting mergers collapse and form stars.

[1]  A. Bemis,et al.  Does the HCN/CO Ratio Trace the Star-forming Fraction of Gas? I. A Comparison with Analytical Models of Star Formation , 2023, The Astrophysical Journal.

[2]  D. Feuillet,et al.  VINTERGATAN-GM: The cosmological imprints of early mergers on Milky-Way-mass galaxies , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  Lihwai Lin,et al.  The ALMaQUEST Survey X: What powers merger induced star formation? , 2022, Monthly Notices of the Royal Astronomical Society.

[4]  S. Maddox,et al.  Dust, CO and [C i]: Cross-calibration of molecular gas mass tracers in metal-rich galaxies across cosmic time , 2022, Monthly Notices of the Royal Astronomical Society.

[5]  V. Buat,et al.  Spatial disconnection between stellar and dust emissions: The test of the Antennae Galaxies (Arp 244) , 2022, Astronomy & Astrophysics.

[6]  N. Brunetti,et al.  Extreme giant molecular clouds in the luminous infrared galaxy NGC 3256 , 2022, Monthly Notices of the Royal Astronomical Society.

[7]  P. Hopkins,et al.  The observability of galaxy merger signatures in nearby gas-rich spirals , 2022, 2206.07545.

[8]  R. Klessen,et al.  Molecular Cloud Populations in the Context of Their Host Galaxy Environments: A Multiwavelength Perspective , 2022, The Astronomical Journal.

[9]  P. Hopkins,et al.  FIREbox: Simulating galaxies at high dynamic range in a cosmological volume , 2022, Monthly Notices of the Royal Astronomical Society.

[10]  M. Hani,et al.  Realistic synthetic integral field spectroscopy with RealSim-IFS , 2022, Monthly Notices of the Royal Astronomical Society.

[11]  S. Walch,et al.  SILCC-Zoom: the dynamic balance in molecular cloud substructures , 2022, 2204.02511.

[12]  A. Usero,et al.  Compact molecular gas emission in local LIRGs among low- and high-z galaxies , 2022, Astronomy & Astrophysics.

[13]  M. Meneghetti,et al.  Exploring the physical properties of lensed star-forming clumps at 2 ≲ z ≲ 6 , 2022, Monthly Notices of the Royal Astronomical Society.

[14]  S. Ellison,et al.  The combined and respective roles of imaging and stellar kinematics in identifying galaxy merger remnants , 2022, 2201.03579.

[15]  L. Colina,et al.  Duality in spatially resolved star formation relations in local LIRGs , 2021, Astronomy & Astrophysics.

[16]  G. Bryan,et al.  Formation and evolution of young massive clusters in galaxy mergers: the SMUGGLE view , 2021, 2109.10356.

[17]  R. Klessen,et al.  PHANGS–ALMA: Arcsecond CO(2–1) Imaging of Nearby Star-forming Galaxies , 2021, The Astrophysical Journal Supplement Series.

[18]  R. Klessen,et al.  Fiery Cores: Bursty and Smooth Star Formation Distributions across Galaxy Centers in Cosmological Zoom-in Simulations , 2021, The Astrophysical Journal.

[19]  R. Klessen,et al.  Giant molecular cloud catalogues for PHANGS-ALMA: methods and initial results , 2021, Monthly Notices of the Royal Astronomical Society.

[20]  F. Bournaud,et al.  The role of gas fraction and feedback in the stability and evolution of galactic discs: implications for cosmological galaxy formation models , 2020, 2011.12966.

[21]  Christine D. Wilson,et al.  Highly turbulent gas on GMC scales in NGC 3256, the nearest luminous infrared galaxy , 2020, 2011.01250.

[22]  A. Weiss,et al.  Turbulent Gas in Lensed Planck-selected Starbursts at z ∼ 1–3.5 , 2020, The Astrophysical Journal.

[23]  A. J. Christensen,et al.  The Catalogue for Astrophysical Turbulence Simulations (CATS) , 2020, The Astrophysical Journal.

[24]  R. Teyssier,et al.  Efficient early stellar feedback can suppress galactic outflows by reducing supernova clustering , 2020, Monthly Notices of the Royal Astronomical Society.

[25]  P. Hopkins,et al.  Spatially resolved star formation and fuelling in galaxy interactions , 2020, Monthly Notices of the Royal Astronomical Society.

[26]  R. Klessen,et al.  Molecular Gas Properties on Cloud Scales across the Local Star-forming Galaxy Population , 2020, The Astrophysical Journal Letters.

[27]  M. Fumagalli,et al.  Shaping the structure of a GMC with radiation and winds , 2020, Monthly Notices of the Royal Astronomical Society.

[28]  C. Lada,et al.  The Mass–Size Relation and the Constancy of GMC Surface Densities in the Milky Way , 2020, The Astrophysical Journal.

[29]  P. Torrey,et al.  Interacting galaxies in the IllustrisTNG simulations - I: Triggered star formation in a cosmological context , 2020, Monthly Notices of the Royal Astronomical Society.

[30]  P. Hopkins,et al.  Live fast, die young: GMC lifetimes in the FIRE cosmological simulations of Milky Way mass galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[31]  S. Glover,et al.  The lifecycle of molecular clouds in nearby star-forming disc galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[32]  Jorge Moreno,et al.  Deep learning predictions of galaxy merger stage and the importance of observational realism , 2019, Monthly Notices of the Royal Astronomical Society.

[33]  S. Martín,et al.  Super Hot Cores in NGC 253: witnessing the formation and early evolution of super star clusters , 2019, Monthly Notices of the Royal Astronomical Society.

[34]  P. P. van der Werf,et al.  Molecular clouds in the Cosmic Snake normal star-forming galaxy 8 billion years ago , 2019, Nature Astronomy.

[35]  A. Leroy,et al.  How Galactic Environment Affects the Dynamical State of Molecular Clouds and Their Star Formation Efficiency , 2019, The Astrophysical Journal.

[36]  V. Wild,et al.  Mergers, starbursts, and quenching in the simba simulation , 2019, Monthly Notices of the Royal Astronomical Society.

[37]  B. Elmegreen,et al.  The Kennicutt–Schmidt Law and Gas Scale Height in Luminous and Ultraluminous Infrared Galaxies , 2019, The Astrophysical Journal.

[38]  M. Vogelsberger,et al.  Disruption of giant molecular clouds and formation of bound star clusters under the influence of momentum stellar feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[39]  P. Hopkins,et al.  Interacting galaxies on FIRE-2: the connection between enhanced star formation and interstellar gas content , 2019, Monthly Notices of the Royal Astronomical Society.

[40]  A. Bolatto,et al.  A diversity of starburst-triggering mechanisms in interacting galaxies and their signatures in CO emission , 2019, Astronomy & Astrophysics.

[41]  J. Bland-Hawthorn,et al.  Star Clusters Across Cosmic Time , 2018, Annual Review of Astronomy and Astrophysics.

[42]  E. Rosolowsky,et al.  The integrated properties of the molecular clouds from the JCMT CO(3–2) High-Resolution Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[43]  A. Weiss,et al.  Three regimes of CO emission in galaxy mergers , 2018, Astronomy & Astrophysics.

[44]  W. Harris,et al.  A universal route for the formation of massive star clusters in giant molecular clouds , 2018, Nature Astronomy.

[45]  B. Burkhart,et al.  The Dense Gas Fraction and The Critical Density Required for Star Formation , 2018, 1805.11104.

[46]  B. Burkhart,et al.  Star formation from dense shocked regions in supersonic isothermal magnetoturbulence , 2018, Monthly Notices of the Royal Astronomical Society.

[47]  B. Groves,et al.  Cloud-scale Molecular Gas Properties in 15 Nearby Galaxies , 2018, The Astrophysical Journal.

[48]  J. Kruijssen,et al.  A general theory for the lifetimes of giant molecular clouds under the influence of galactic dynamics , 2018, 1803.01850.

[49]  D. Schiminovich,et al.  xGASS: total cold gas scaling relations and molecular-to-atomic gas ratios of galaxies in the local Universe , 2018, 1802.02373.

[50]  Blakesley Burkhart,et al.  The Star Formation Rate in the Gravoturbulent Interstellar Medium , 2018, The Astrophysical Journal.

[51]  A. Leroy,et al.  A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces. I. Cloud-scale Gas Motions , 2017, 1712.06364.

[52]  P. Hopkins A New Public Release of the GIZMO Code , 2017, 1712.01294.

[53]  D. Schiminovich,et al.  xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies , 2017, 1710.02157.

[54]  S. Kaviraj,et al.  The limited role of galaxy mergers in driving stellar mass growth over cosmic time , 2017, 1708.09396.

[55]  M. Krumholz,et al.  A unified model for galactic discs: star formation, turbulence driving, and mass transport , 2017, 1706.00106.

[56]  K. Sheth,et al.  ALMA CO Clouds and Young Star Complexes in the Interacting Galaxies IC 2163 and NGC 2207 , 2017, 1704.03086.

[57]  Paul Torrey,et al.  FIRE-2 simulations: physics versus numerics in galaxy formation , 2017, Monthly Notices of the Royal Astronomical Society.

[58]  P. Hopkins,et al.  Comparing models for IMF variation across cosmological time in Milky Way-like galaxies , 2017, 1702.04431.

[59]  P. Hopkins,et al.  What FIREs up star formation: The emergence of the Kennicutt-Schmidt law from feedback , 2017, 1701.01788.

[60]  P. Hopkins,et al.  When feedback fails: The scaling and saturation of star formation efficiency , 2016, 1612.05635.

[61]  K. Kohno,et al.  A statistical study of giant molecular clouds traced by 13CO, C18O, CS, and CH3OH in the disk of NGC 1068 based on ALMA observations , 2016, 1612.00948.

[62]  A. Bolatto,et al.  Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions , 2016, 1611.09864.

[63]  M. Miville-Deschênes,et al.  PHYSICAL PROPERTIES OF MOLECULAR CLOUDS FOR THE ENTIRE MILKY WAY DISK , 2016, 1610.05918.

[64]  R. Teyssier,et al.  High-redshift major mergers weakly enhance star formation , 2016, 1610.03877.

[65]  E. Ostriker,et al.  SUPERBUBBLES IN THE MULTIPHASE ISM AND THE LOADING OF GALACTIC WINDS , 2016, 1610.03092.

[66]  M. Miville-Deschênes,et al.  OBSERVATIONAL EVIDENCE OF DYNAMIC STAR FORMATION RATE IN MILKY WAY GIANT MOLECULAR CLOUDS , 2016, 1608.05415.

[67]  J. Knapen,et al.  Interacting galaxies in the nearby Universe: only moderate increase of star formation , 2015, 1509.05164.

[68]  T. Dame,et al.  Molecular Clouds in the Milky Way , 2015 .

[69]  P. Torrey,et al.  Galaxy pairs in the Sloan Digital Sky Survey – X. Does gas content alter star formation rate enhancement in galaxy interactions? , 2015, 1503.05194.

[70]  L. Hernquist,et al.  Mapping galaxy encounters in numerical simulations: the spatial extent of induced star formation , 2015, 1501.03573.

[71]  Liverpool John Moores University,et al.  Local Group galaxies emerge from the dark , 2014, 1412.2748.

[72]  P. Hopkins A new class of accurate, mesh-free hydrodynamic simulation methods , 2014, 1409.7395.

[73]  B. Ercolano,et al.  Before the first supernova: combined effects of H II regions and winds on molecular clouds , 2014, 1404.6102.

[74]  F. Bournaud,et al.  Starbursts triggered by intergalactic tides andinterstellar compressive turbulence , 2014, 1403.7316.

[75]  R. Klein,et al.  Star cluster formation in turbulent, magnetized dense clumps with radiative and outflow feedback , 2014, 1401.6096.

[76]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[77]  A. Dekel,et al.  Radiative feedback and the low efficiency of galaxy formation in low-mass haloes at high redshift , 2013, 1307.0943.

[78]  P. Torrey,et al.  Galaxy pairs in the Sloan Digital Sky Survey – VI. The orbital extent of enhanced star formation in interacting galaxies , 2013, 1305.1595.

[79]  Helsinki,et al.  Constrained simulations of the Antennae galaxies: comparison with Herschel-PACS observations , 2013, 1305.0828.

[80]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[81]  P. D. Werf,et al.  The molecular gas in Luminous Infrared Galaxies I: CO lines, extreme physical conditions, and their drivers , 2011, 1109.4176.

[82]  E. Ostriker,et al.  The CO-H2 Conversion Factor in Disc Galaxies and Mergers , 2011, 1104.4118.

[83]  E. Emsellem,et al.  High-resolution simulations of galaxy mergers: resolving globular cluster formation , 2008, 0806.1386.

[84]  Adam K. Leroy,et al.  The Resolved Properties of Extragalactic Giant Molecular Clouds , 2008, Proceedings of the International Astronomical Union.

[85]  U. Chile,et al.  The Second Survey of the Molecular Clouds in the Large Magellanic Cloud by NANTEN. I. Catalog of Molecular Clouds , 2008, 0804.1458.

[86]  K. Golap,et al.  CASA Architecture and Applications , 2007 .

[87]  Bonn,et al.  Molecular gas in the Andromeda galaxy , 2005, astro-ph/0512563.

[88]  Christopher F. McKee,et al.  A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.

[89]  Carnegie-Mellon,et al.  A Merger-driven Scenario for Cosmological Disk Galaxy Formation , 2005, astro-ph/0503369.

[90]  P. Solomon,et al.  The Star Formation Rate and Dense Molecular Gas in Galaxies , 2003, astro-ph/0310339.

[91]  E. Seaquist,et al.  A Multitransition CO Study of the Antennae Galaxies NGC 4038/9 , 2003, astro-ph/0301126.

[92]  S. M. Fall,et al.  A Multiwavelength Study of the Young Star Clusters and Interstellar Medium in the Antennae Galaxies , 2001, astro-ph/0105174.

[93]  Canada,et al.  High-Resolution Imaging of Molecular Gas and Dust in the Antennae (NGC 4038/39): Super Giant Molecular Complexes , 2000, astro-ph/0005208.

[94]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[95]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[96]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[97]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[98]  L. Hernquist,et al.  Ultraluminous starbursts in major mergers , 1994, astro-ph/9405039.

[99]  L. Hernquist,et al.  Fueling Starburst Galaxies with Gas-rich Mergers , 1991 .

[100]  L. Hernquist Tidal triggering of starbursts and nuclear activity in galaxies , 1989, Nature.

[101]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[102]  S. Klein Astronomy and astrophysics with , 2008 .

[103]  L. Hernquist,et al.  Transformations of Galaxies. II. Gasdynamics in Merging Disk Galaxies , 1996 .