The First Habitable-zone Earth-sized Planet from TESS. I. Validation of the TOI-700 System

We present the discovery and validation of a three-planet system orbiting the nearby (31.1 pc) M2 dwarf star TOI-700 (TIC 150428135). TOI-700 lies in the TESS continuous viewing zone in the Southern Ecliptic Hemisphere; observations spanning 11 sectors reveal three planets with radii ranging from 1 R$_\oplus$ to 2.6 R$_\oplus$ and orbital periods ranging from 9.98 to 37.43 days. Ground-based follow-up combined with diagnostic vetting and validation tests enable us to rule out common astrophysical false-positive scenarios and validate the system of planets. The outermost planet, TOI-700 d, has a radius of $1.19\pm0.11$ R$_\oplus$ and resides in the conservative habitable zone of its host star, where it receives a flux from its star that is approximately 86% of the Earth's insolation. In contrast to some other low-mass stars that host Earth-sized planets in their habitable zones, TOI-700 exhibits low levels of stellar activity, presenting a valuable opportunity to study potentially-rocky planets over a wide range of conditions affecting atmospheric escape. While atmospheric characterization of TOI-700 d with the James Webb Space Telescope (JWST) will be challenging, the larger sub-Neptune, TOI-700 c (R = 2.63 R$_\oplus$), will be an excellent target for JWST and beyond. TESS is scheduled to return to the Southern Hemisphere and observe TOI-700 for an additional 11 sectors in its extended mission, which should provide further constraints on the known planet parameters and searches for additional planets and transit timing variations in the system.

Keivan G. Stassun | Nikole K. Lewis | Stephen A. Rinehart | Sara Seager | Geronimo L. Villanueva | Gabrielle Suissa | George R. Ricker | Stephen R. Kane | Joshua N. Winn | Vladimir S. Airapetian | Peter Plavchan | Peter Tenenbaum | Jon M. Jenkins | Ryan Cloutier | Avi M. Mandell | Sean N. Raymond | Joel D. Hartman | Tansu Daylan | Fergal Mullally | Jack J. Lissauer | Elisa V. Quintana | Wei-Chun Jao | Jennifer G. Winters | Jessie L. Christiansen | Steve B. Howell | Mark E. Everett | Nicholas Law | Joshua E. Schlieder | Lisa Kaltenegger | Lucianne M. Walkowicz | Thomas Barclay | Jason F. Rowe | Samuel N. Quinn | Laura Kreidberg | Carl Ziegler | Susan E. Mullally | Sarah E. Logsdon | David W. Latham | Fred C. Adams | David R. Ciardi | Courtney D. Dressing | Benjamin J. Shappee | Eliot Halley Vrijmoet | Andrew Vanderburg | Patricia T. Boyd | Giovanni Covone | Veselin B. Kostov | Allison Youngblood | Eric D. Lopez | Karen A. Collins | Christopher J. Burke | Andrew W. Mann | Nora L. Eisner | Michele L. Silverstein | Kelsey Hoffman | Ethan Kruse | Jonathan Brande | Daria Pidhorodetska | Luca Cacciapuoti | Joseph E. Rodriguez | Sebastian Zieba | Emily A. Gilbert | Jeffrey C. Smith | Knicole D. Col'on | Ravi kumar Kopparapu | Eve J. Lee | Eric T. Wolf | G'asp'ar 'A. Bakos | Roland K. Vanderspek | Christopher Lam | Todd Henry | Dennis M. Conti | Zahra Essack | Tianjun Gan | Giovanni Isopi | Eric L. N. Jensen | Franco Mallia | Rachel A. Matson | B'arbara Rojas-Ayala | Alex R. Howe | C'esar Briceno | Giada N. Arney | Benjamin J. Hord | Matthew S. Clement | Quadry Chance | Danielle Dineen | Thomas J. Fauchez | Brianna Galgano | Teresa Monsue | Rishi Paudel | Naylynn Tan'on Reyes | Laura D. Vega | Andrew Couperus | Mario Di Sora | Mackenna Lee Wood

[1]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[2]  Gregory Laughlin,et al.  Kepler Multi-planet Systems Exhibit Unexpected Intra-system Uniformity in Mass and Radius , 2017, 1710.11152.

[3]  Sara Seager,et al.  A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270 , 2019, Nature Astronomy.

[4]  A. Beiser,et al.  Climatic change : evidence, causes, and effects , 1953 .

[5]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[6]  Xavier Dumusque,et al.  Measuring precise radial velocities on individual spectral lines , 2018, Astronomy & Astrophysics.

[7]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[8]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[9]  Brian McLean,et al.  The Guide Star Catalog. I. Astronomical Foundations and Image Processing , 1990 .

[10]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[11]  Portugal,et al.  Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - II. Ages, metallicities, detailed elemental abundances, and connections to the Galactic thick disc , 2009, 0911.5076.

[12]  E. Agol,et al.  VALIDATION OF KEPLER'S MULTIPLE PLANET CANDIDATES. III. LIGHT CURVE ANALYSIS AND ANNOUNCEMENT OF HUNDREDS OF NEW MULTI-PLANET SYSTEMS , 2014, 1402.6534.

[13]  S. Tritton,et al.  CURRENT AND FUTURE PROGRAMMES WITH THE UK SCHMIDT TELESCOPE , 1992 .

[14]  J. Drake,et al.  Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets , 2018, The astrophysical journal. Letters.

[15]  Peter Tenenbaum,et al.  The TESS science processing operations center , 2016, Astronomical Telescopes + Instrumentation.

[16]  J. Winters,et al.  THE SOLAR NEIGHBORHOOD. XXXII. THE HYDROGEN BURNING LIMIT, , 2013, 1312.1736.

[17]  E. Guinan,et al.  Atmospheric Loss of Exoplanets Resulting from Stellar X-Ray and Extreme-Ultraviolet Heating , 2003 .

[18]  R. Rosner,et al.  The Sun as an X-Ray Star. II. Using the Yohkoh/Soft X-Ray Telescope-derived Solar Emission Measure versus Temperature to Interpret Stellar X-Ray Observations , 2000 .

[19]  Leslie A. Rogers,et al.  A Joint Mass–Radius–Period Distribution of Exoplanets , 2019 .

[20]  M. R. Haas,et al.  THE K2 ECLIPTIC PLANE INPUT CATALOG (EPIC) AND STELLAR CLASSIFICATIONS OF 138,600 TARGETS IN CAMPAIGNS 1–8 , 2015, 1512.02643.

[21]  A. Pál,et al.  Frequent Flaring in the TRAPPIST-1 System—Unsuited for Life? , 2017, 1703.10130.

[22]  K. Braun,et al.  HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS , 2015, 1501.01635.

[23]  R. P. Butler,et al.  THE MAGELLAN PFS PLANET SEARCH PROGRAM: RADIAL VELOCITY AND STELLAR ABUNDANCE ANALYSES OF THE 360 au, METAL-POOR BINARY “TWINS” HD 133131A & B , 2016, 1608.06216.

[24]  Charles A. Beichman,et al.  UNDERSTANDING THE EFFECTS OF STELLAR MULTIPLICITY ON THE DERIVED PLANET RADII FROM TRANSIT SURVEYS: IMPLICATIONS FOR KEPLER, K2, AND TESS , 2015, 1503.03516.

[25]  C. Dong,et al.  Atmospheric Escape From TOI-700 d: Venus versus Earth Analogs , 2020, The Astrophysical Journal.

[26]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[27]  David M. Kipping,et al.  Parametrizing the exoplanet eccentricity distribution with the beta distribution. , 2013, 1306.4982.

[28]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[29]  William C. Danchi,et al.  How Hospitable Are Space Weather Affected Habitable Zones? The Role of Ion Escape , 2017 .

[30]  J. J. González-Vidal,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[31]  A. Tokovinin Ten Years of Speckle Interferometry at SOAR , 2018, 1801.04772.

[32]  A. V. R. Silva,et al.  Decoding the radial velocity variations of HD 41248 with ESPRESSO , 2019, Astronomy & Astrophysics.

[33]  M. Riva,et al.  ESPRESSO: The next European exoplanet hunter , 2014, 1401.5918.

[34]  C. S. Fernandes,et al.  A seven-planet resonant chain in TRAPPIST-1 , 2017, Nature Astronomy.

[35]  D. Ciardi,et al.  Radial Velocity Planet Detection Biases at the Stellar Rotational Period , 2016, 1604.03143.

[36]  K. Covey,et al.  NEAR-INFRARED METALLICITIES, RADIAL VELOCITIES, AND SPECTRAL TYPES FOR 447 NEARBY M DWARFS , 2013, 1310.1087.

[37]  R. F. Díaz,et al.  Characterization of the L 98-59 multi-planetary system with HARPS , 2019, Astronomy & Astrophysics.

[38]  E. Agol,et al.  Analytic Planetary Transit Light Curves and Derivatives for Stars with Polynomial Limb Darkening , 2019, The Astronomical Journal.

[39]  M. Cushing,et al.  Kepler Planet Occurrence Rates for Mid-type M Dwarfs as a Function of Spectral Type , 2019, The Astronomical Journal.

[40]  J. Fortney,et al.  THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY , 2013, 1305.0269.

[41]  Keivan G. Stassun,et al.  The L 98-59 System: Three Transiting, Terrestrial-size Planets Orbiting a Nearby M Dwarf , 2019, The Astronomical Journal.

[42]  Marco Bonati,et al.  CHIRON—A Fiber Fed Spectrometer for Precise Radial Velocities , 2013, 1309.3971.

[43]  James E. Owen,et al.  KEPLER PLANETS: A TALE OF EVAPORATION , 2013, 1303.3899.

[44]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[45]  Sara Seager,et al.  Three Red Suns in the Sky: A Transiting, Terrestrial Planet in a Triple M-dwarf System at 6.9 pc , 2019, The Astronomical Journal.

[46]  Kenneth J. Slatten,et al.  The Solar Neighborhood. XLV. The Stellar Multiplicity Rate of M Dwarfs Within 25 pc , 2019, The Astronomical Journal.

[47]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[48]  U. Munari,et al.  Local stellar kinematics from RAVE data - I. Local standard of rest , 2010, Monthly Notices of the Royal Astronomical Society.

[49]  Robert H. Anderson,et al.  The Goodman spectrograph , 2004, SPIE Astronomical Telescopes + Instrumentation.

[50]  Todd J. Henry,et al.  A Standard Stellar Spectral Sequence in the Red/Near-Infrared: Classes K5 to M9 , 1991 .

[51]  P. Berlind,et al.  THE Hα EMISSION OF NEARBY M DWARFS AND ITS RELATION TO STELLAR ROTATION , 2016, 1611.03509.

[52]  J. Lissauer,et al.  The CARMENES search for exoplanets around M dwarfs , 2020, Astronomy & Astrophysics.

[53]  Drake Deming,et al.  Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b , 2019, Nature.

[54]  David C. Catling,et al.  The Cosmic Shoreline: The Evidence that Escape Determines which Planets Have Atmospheres, and what this May Mean for Proxima Centauri B , 2017, 1702.03386.

[55]  K. Poppenhaeger,et al.  MAGNETOSPHERIC STRUCTURE AND ATMOSPHERIC JOULE HEATING OF HABITABLE PLANETS ORBITING M-DWARF STARS , 2014, 1405.7707.

[56]  John T. Rayner,et al.  An Infrared Spectroscopic Sequence of M, L, and T Dwarfs , 2004, astro-ph/0412313.

[57]  Keivan G. Stassun,et al.  ASTROIMAGEJ: IMAGE PROCESSING AND PHOTOMETRIC EXTRACTION FOR ULTRA-PRECISE ASTRONOMICAL LIGHT CURVES , 2016, 1601.02622.

[58]  S. Raymond,et al.  Migration-driven diversity of super-Earth compositions , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[59]  P. Muirhead,et al.  Chemo-kinematic Ages of Eccentric-planet-hosting M Dwarf Stars , 2018, The Astrophysical Journal.

[60]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[61]  Thomas Barclay,et al.  Prospects for TTV Detection and Dynamical Constraints with TESS , 2018, The Astronomical Journal.

[62]  D. Kipping,et al.  PROBABILISTIC FORECASTING OF THE MASSES AND RADII OF OTHER WORLDS , 2016, 1603.08614.

[63]  C. X.,et al.  THE ORBITAL ECCENTRICITY OF SMALL PLANET SYSTEMS , 2018 .

[64]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[65]  D. Charbonneau,et al.  THE OCCURRENCE OF POTENTIALLY HABITABLE PLANETS ORBITING M DWARFS ESTIMATED FROM THE FULL KEPLER DATASET AND AN EMPIRICAL MEASUREMENT OF THE DETECTION SENSITIVITY , 2015, 1501.01623.

[66]  Philip A. Ianna,et al.  The Solar Neighborhood. XIII. Parallax Results from the CTIOPI 0.9 Meter Program: Stars with μ >= 1.0" yr -1 (MOTION Sample) , 2005 .

[67]  L. Girardi,et al.  GALEX catalogs of UV sources: statistical properties and sample science applications: hot white dwarfs in the Milky Way , 2011 .

[68]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[69]  J. L. Rasilla,et al.  Revisiting Proxima with ESPRESSO , 2020, Astronomy & Astrophysics.

[70]  E. Lopez,et al.  The Sub-Neptune Desert and Its Dependence on Stellar Type: Controlled by Lifetime X-Ray Irradiation , 2019, The Astrophysical Journal.

[71]  J. Owen,et al.  Planetary evaporation by UV and X‐ray radiation: basic hydrodynamics , 2012, 1206.2367.

[72]  Drake Deming,et al.  THE TRANSITING EXOPLANET SURVEY SATELLITE: SIMULATIONS OF PLANET DETECTIONS AND ASTROPHYSICAL FALSE POSITIVES , 2015, 1506.03845.

[73]  D. Ehrenreich,et al.  Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST-1 , 2016, 1605.01564.

[74]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[75]  J. Fortney,et al.  UNDERSTANDING THE MASS–RADIUS RELATION FOR SUB-NEPTUNES: RADIUS AS A PROXY FOR COMPOSITION , 2013, 1311.0329.

[76]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[77]  R. P. Butler,et al.  A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone , 2013, 1306.6074.

[78]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[79]  Jr.,et al.  Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites , 2006, astro-ph/0606671.

[80]  Sarah Ballard,et al.  Predicted Number, Multiplicity, and Orbital Dynamics of TESS M-dwarf Exoplanets , 2018, The Astronomical Journal.

[81]  Keivan G. Stassun,et al.  The TESS Input Catalog and Candidate Target List , 2017, The Astronomical Journal.

[82]  Fergal Mullally,et al.  Discovery and Vetting of Exoplanets. I. Benchmarking K2 Vetting Tools , 2019, The Astronomical Journal.

[83]  C. Dong,et al.  Atmospheric escape from the TRAPPIST-1 planets and implications for habitability , 2017, Proceedings of the National Academy of Sciences.

[84]  Chuanfei Dong,et al.  Is Proxima Centauri b Habitable? A Study of Atmospheric Loss , 2017, 1702.04089.

[85]  E. Agol,et al.  Kepler-62f: Kepler's first small planet in the habitable zone, but is it real? , 2018, New Astronomy Reviews.

[86]  Antonino Francesco Lanza,et al.  Reducing activity-induced variations in a radial-velocity time series of the Sun as a star , 2019, Monthly Notices of the Royal Astronomical Society.

[87]  Daniel S. Katz,et al.  The Journal of Open Source Software , 2017 .

[88]  Nsw,et al.  HATS-1b: THE FIRST TRANSITING PLANET DISCOVERED BY THE HATSouth SURVEY , 2012, 1206.1524.

[89]  Adam L. Kraus,et al.  How to Constrain Your M Dwarf. II. The Mass–Luminosity–Metallicity Relation from 0.075 to 0.70 Solar Masses , 2018, The Astrophysical Journal.

[90]  David R. Soderblom,et al.  Calculating Galactic Space Velocities and Their Uncertainties, with an Application to the Ursa Major Group , 1987 .

[91]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[92]  M. Way,et al.  Impact of space weather on climate and habitability of terrestrial-type exoplanets , 2019, International Journal of Astrobiology.

[93]  Y. Alibert,et al.  Interior Characterization in Multiplanetary Systems: TRAPPIST-1 , 2018, The Astrophysical Journal.

[95]  Keivan G. Stassun,et al.  The Revised TESS Input Catalog and Candidate Target List , 2019, The Astronomical Journal.

[96]  A. Szalay,et al.  The On-Orbit Performance of the Galaxy Evolution Explorer , 2004, astro-ph/0411310.

[97]  C. Ormel,et al.  Formation of TRAPPIST-1 and other compact systems , 2017, 1703.06924.

[98]  John C. Geary,et al.  Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities , 2012, Science.

[99]  Andrew Cumming,et al.  The California-Kepler Survey. V. Peas in a Pod: Planets in a Kepler Multi-planet System Are Similar in Size and Regularly Spaced , 2017, 1706.06204.

[100]  James P. Lloyd,et al.  METALLICITY AND TEMPERATURE INDICATORS IN M DWARF K-BAND SPECTRA: TESTING NEW AND UPDATED CALIBRATIONS WITH OBSERVATIONS OF 133 SOLAR NEIGHBORHOOD M DWARFS , 2011, 1112.4567.

[101]  Steve B. Howell,et al.  Stellar Companions of Exoplanet Host Stars in K2 , 2018, The Astronomical Journal.

[102]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample , 2011, 1111.5019.

[103]  Timothy D. Morton,et al.  VESPA: False positive probabilities calculator , 2015 .

[104]  Robert T. Zellem,et al.  A Framework for Prioritizing the TESS Planetary Candidates Most Amenable to Atmospheric Characterization , 2018, Publications of the Astronomical Society of the Pacific.

[105]  Jennifer G. Winters,et al.  SPECKLE IMAGING EXCLUDES LOW-MASS COMPANIONS ORBITING THE EXOPLANET HOST STAR TRAPPIST-1 , 2016, 1610.05269.

[106]  E. Ford,et al.  A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS , 2011, 1103.3896.

[107]  N. Hambly,et al.  THE SOLAR NEIGHBORHOOD. XXIII. CCD PHOTOMETRIC DISTANCE ESTIMATES OF SCR TARGETS—77 M DWARF SYSTEMS WITHIN 25 pc , 2010, 1012.2078.

[108]  M. Aschwanden Irradiance observations of the 1–8 Å solar soft X-ray flux from goes , 1994 .

[109]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[110]  Astrophysics,et al.  The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.

[111]  Jack J. Lissauer,et al.  Timescales for planetary accretion and the structure of the protoplanetary disk , 1986 .

[112]  P. Cargile,et al.  THE SOLAR NEIGHBORHOOD. XXXVII. THE MASS–LUMINOSITY RELATION FOR MAIN-SEQUENCE M DWARFS , 2016, 1608.04775.

[113]  M. Ireland,et al.  They are small worlds after all: revised properties of Kepler M dwarf stars and their planets , 2015, 1512.04437.

[114]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[115]  F. Adams,et al.  Effects of unseen additional planetary perturbers on compact extrasolar planetary systems , 2017, 1702.07714.

[116]  Dominic J. Benford,et al.  Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.

[117]  A. Johansen,et al.  Forming the cores of giant planets from the radial pebble flux in protoplanetary discs , 2014, 1408.6094.

[118]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[119]  Stephen R. Kane,et al.  ON THE FREQUENCY OF POTENTIAL VENUS ANALOGS FROM KEPLER DATA , 2014, 1409.2886.

[120]  Martin C. Stumpe,et al.  Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction , 2012, 1203.1383.

[121]  E. Lopez Born dry in the photoevaporation desert: Kepler's ultra-short-period planets formed water-poor , 2016, 1610.01170.

[122]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[123]  E. Agol,et al.  VALIDATION OF KEPLER'S MULTIPLE PLANET CANDIDATES. II. REFINED STATISTICAL FRAMEWORK AND DESCRIPTIONS OF SYSTEMS OF SPECIAL INTEREST , 2014, 1402.6352.

[124]  Erik Petigura,et al.  An asteroseismic view of the radius valley: stripped cores, not born rocky , 2017, Monthly Notices of the Royal Astronomical Society.

[125]  P. Tenenbaum,et al.  Kepler Data Validation II–Transit Model Fitting and Multiple-planet Search , 2018, Publications of the Astronomical Society of the Pacific.

[126]  Jie Li,et al.  Kepler Data Validation I—Architecture, Diagnostic Tests, and Data Products for Vetting Transiting Planet Candidates , 2018, 1803.04526.

[127]  B. M. Lasker,et al.  Digitization Programs at STScI , 1994 .

[128]  J. Drake,et al.  THE INTERACTION OF VENUS-LIKE, M-DWARF PLANETS WITH THE STELLAR WIND OF THEIR HOST STAR , 2015, 1504.06326.

[129]  E. Agol,et al.  TTVFast: AN EFFICIENT AND ACCURATE CODE FOR TRANSIT TIMING INVERSION PROBLEMS , 2014, 1403.1895.

[130]  Jonathan J. Fortney,et al.  HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND , 2012, 1205.0010.

[131]  D. O. Astronomy,et al.  Exploring the Milky Way stellar disk - A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood , 2013, 1309.2631.

[132]  S. Mohanty,et al.  Habitability of terrestrial-mass planets in the HZ of M Dwarfs – I. H/He-dominated atmospheres , 2016, 1601.05143.

[133]  Daniel Foreman-Mackey,et al.  stardate: Combining dating methods for better stellar ages , 2019, J. Open Source Softw..

[134]  Sara Seager,et al.  The First Habitable-zone Earth-sized Planet from TESS. II. Spitzer Confirms TOI-700 d , 2020, The Astronomical Journal.

[135]  R. Mendez,et al.  The Solar Neighborhood. VII. Discovery and Characterization of Nearby Multiples in the CTIO Parallax Investigation , 2003 .

[136]  Susan E. Thompson,et al.  Re-evaluating Small Long-period Confirmed Planets from Kepler , 2019, The Astronomical Journal.

[137]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[138]  Elisa V. Quintana,et al.  A Revised Exoplanet Yield from the Transiting Exoplanet Survey Satellite (TESS) , 2018, The Astrophysical Journal Supplement Series.

[139]  D. Charbonneau,et al.  Characterizing K2 Candidate Planetary Systems Orbiting Low-mass Stars. I. Classifying Low-mass Host Stars Observed during Campaigns 1–7 , 2017, 1701.00586.

[140]  J. Drake,et al.  The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 Planets , 2017, 1706.04617.

[141]  A. D. Feinstein,et al.  Characterizing K2 Candidate Planetary Systems Orbiting Low-mass Stars. IV. Updated Properties for 86 Cool Dwarfs Observed during Campaigns 1–17 , 2019, The Astrophysical journal.

[142]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[143]  R. P. Butler,et al.  The CARMENES search for exoplanets around M dwarfs , 2017, Astronomy & Astrophysics.

[144]  D. Dragomir,et al.  Planetary system around the nearby M dwarf GJ 357 including a transiting, hot, Earth-sized planet optimal for atmospheric characterization , 2019, Astronomy & Astrophysics.

[145]  Justin R. Crepp,et al.  VALIDATION OF 12 SMALL KEPLER TRANSITING PLANETS IN THE HABITABLE ZONE , 2015, 1501.01101.

[146]  J. Brewer,et al.  PROSPECTING IN LATE-TYPE DWARFS: A CALIBRATION OF INFRARED AND VISIBLE SPECTROSCOPIC METALLICITIES OF LATE K AND M DWARFS SPANNING 1.5 dex , 2012, 1211.4630.

[147]  K. Stȩpień,et al.  Age-Rotation-Activity Relations for M Dwarf Stars Based on ASAS Photometric Data , 2007, 0707.2577.

[148]  J. Winn,et al.  The Orbital Eccentricity of Small Planet Systems , 2018, The Astronomical Journal.

[149]  J. Jenkins,et al.  Some Tests to Establish Confidence in Planets Discovered by Transit Photometry , 2002 .

[150]  Geert Barentsen,et al.  Four Small Planets Buried in K2 Systems: What Can We Learn for TESS? , 2019, The Astrophysical Journal.

[151]  Daniel Foreman-Mackey,et al.  Detection of Hundreds of New Planet Candidates and Eclipsing Binaries in K2 Campaigns 0–8 , 2019, The Astrophysical Journal Supplement Series.

[152]  I. Ribas,et al.  Estimation of the XUV radiation onto close planets and their evaporation , 2011, 1105.0550.

[153]  Daniel Foreman-Mackey,et al.  Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series , 2017, 1703.09710.

[154]  J. Lissauer,et al.  A ~7.5 M⊕ Planet Orbiting the Nearby Star, GJ 876* , 2005, astro-ph/0510508.

[155]  P. Conroy,et al.  HATSouth: A Global Network of Fully Automated Identical Wide-Field Telescopes , 2012, 1206.1391.

[156]  Khadeejah A. Zamudio,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. VII. THE FIRST FULLY UNIFORM CATALOG BASED ON THE ENTIRE 48-MONTH DATA SET (Q1–Q17 DR24) , 2015, 1512.06149.

[157]  Olivier Bienayme,et al.  THE RADIAL VELOCITY EXPERIMENT (RAVE): FIFTH DATA RELEASE , 2013, 1609.03210.

[158]  Planets Formed in Habitable Zones of M Dwarf Stars Probably Are Deficient in Volatiles , 2007, astro-ph/0703576.

[159]  Daniel Foreman-Mackey,et al.  Scalable Backpropagation for Gaussian Processes using Celerite , 2018, 1801.10156.

[161]  J. Drake,et al.  The Space Environment and Atmospheric Joule Heating of the Habitable Zone Exoplanet TOI 700 d , 2020, The Astrophysical Journal.

[162]  Khadeejah A. Zamudio,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. V. PLANET SAMPLE FROM Q1–Q12 (36 MONTHS) , 2015, 1501.07286.

[163]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[164]  Jessie L. Dotson,et al.  Lightkurve: Kepler and TESS time series analysis in Python , 2018 .

[165]  K. Kinemuchi,et al.  ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS , 2012, 1201.5424.

[166]  James E. Owen,et al.  The Evaporation Valley in the Kepler Planets , 2017, 1705.10810.

[167]  Andreas Kelz,et al.  Development of the wide-field IFU PPak , 2004, SPIE Astronomical Telescopes + Instrumentation.

[168]  Alex Glocer,et al.  On the Magnetic Protection of the Atmosphere of Proxima Centauri b , 2017 .

[169]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[170]  P. Berlind,et al.  LHS 1610A: A Nearby Mid-M Dwarf with a Companion That Is Likely a Brown Dwarf , 2018, 1801.07340.

[171]  Martin C. Stumpe,et al.  Multiscale Systematic Error Correction via Wavelet-Based Bandsplitting in Kepler Data , 2014 .

[172]  D. Kipping Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws , 2013, 1308.0009.

[173]  Eric L. N. Jensen,et al.  Tapir: A web interface for transit/eclipse observability , 2013 .

[174]  Ignasi Ribas,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[175]  T. Morton AN EFFICIENT AUTOMATED VALIDATION PROCEDURE FOR EXOPLANET TRANSIT CANDIDATES , 2012, 1206.1568.

[176]  Vanessa P. Bailey,et al.  TWO SMALL TEMPERATE PLANETS TRANSITING NEARBY M DWARFS IN K2 CAMPAIGNS 0 AND 1 , 2016, 1601.02706.

[177]  Andreas Kelz,et al.  Ground-based instrumentation for astronomy , 2004 .

[178]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[179]  Khadeejah A. Zamudio,et al.  Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25 , 2017, The Astrophysical journal. Supplement series.

[180]  E. Agol,et al.  EVEREST: PIXEL LEVEL DECORRELATION OF K2 LIGHT CURVES , 2016, 1607.00524.

[182]  M. R. Haas,et al.  CONTAMINATION IN THE KEPLER FIELD. IDENTIFICATION OF 685 KOIs AS FALSE POSITIVES VIA EPHEMERIS MATCHING BASED ON Q1–Q12 DATA , 2014, 1401.1240.

[184]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[185]  Eiichiro Kokubo,et al.  Oligarchic growth of protoplanets , 1996 .

[186]  A Planetary Companion to a Nearby M4 Dwarf, Gliese 876* , 1998, astro-ph/9807307.

[187]  Yanqin Wu,et al.  THEORY OF SECULAR CHAOS AND MERCURY'S ORBIT , 2010, 1012.3706.

[188]  Chelsea X. Huang,et al.  A Super-Earth and Sub-Neptune Transiting the Late-type M Dwarf LP 791-18 , 2019, The Astrophysical Journal.

[189]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[190]  D. Charbonneau,et al.  THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS , 2013, 1302.1647.

[191]  K. Stassun,et al.  Evidence for a Systematic Offset of −80 μas in the Gaia DR2 Parallaxes , 2018, The Astrophysical Journal.

[192]  Howard Isaacson,et al.  The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets , 2017, 1703.10375.

[193]  É. Bolmont,et al.  Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1 , 2016, 1605.00616.

[194]  K. Nakazawa,et al.  Formation of Giant Planets in Dense Nebulae: Critical Core Mass Revisited , 2001 .

[195]  D. James,et al.  Trumpeting M dwarfs with CONCH-SHELL: a catalogue of nearby cool host-stars for habitable exoplanets and life , 2014, 1406.7353.

[196]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[197]  Howard Isaacson,et al.  An Earth-Sized Planet in the Habitable Zone of a Cool Star , 2014, Science.

[198]  Kevin Heng,et al.  The nature of the TRAPPIST-1 exoplanets. , 2018, 1802.01377.

[199]  D. Hogg,et al.  Toward Precise Stellar Ages: Combining Isochrone Fitting with Empirical Gyrochronology , 2019, The Astronomical Journal.

[200]  Andrew A. West,et al.  THE ROTATION AND GALACTIC KINEMATICS OF MID M DWARFS IN THE SOLAR NEIGHBORHOOD , 2015, 1511.00957.

[201]  D. Ciardi,et al.  SPECKLE CAMERA OBSERVATIONS FOR THE NASA KEPLER MISSION FOLLOW-UP PROGRAM , 2011 .

[202]  H. Strughold,et al.  The Green and Red Planet: A Physiological Study of the Possibility of Life on Mars , 2012 .

[203]  H. Lichtenegger,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[204]  A. Dupree,et al.  THE KEPLER FOLLOW-UP OBSERVATION PROGRAM. I. A CATALOG OF COMPANIONS TO KEPLER STARS FROM HIGH-RESOLUTION IMAGING , 2016, 1612.02392.