Planar polymer light-emitting device with fast kinetics at a low voltage

Polymer light-emitting electrochemical cells containing a ternary mixture of a soluble phenyl-substituted poly(para-phenylene vinylene) copolymer (“superyellow”), a dicyclohexano-18-crown-6 (DCH18C6) crown ether and a LiCF3SO3 salt as the active material have been assembled. Planar Au/{superyellow+DCH18C6+LiCF3SO3}/Au devices, with an interelectrode gap of 50 μm, were initially charged (i.e., electrochemically p- and n-doped in situ) at T=85 °C and then cooled to room temperature under applied voltage. When operated at T=23 °C charged devices show electroluminescence with fast response (< 1 s) at a low applied voltage (V⩾6 V). Charged devices could be stored under open-circuit conditions at room temperature for a prolonged time without detectable changes in device performance, and they can be completely (reversibly) discharged by raising the temperature to 85 °C. The active material mixtures were studied by atomic force microscopy and differential scanning calorimetry. The results demonstrate that superye...

[1]  D. Moses,et al.  Influence of the anion on the kinetics and stability of a light-emitting electrochemical cell , 2003 .

[2]  D. Moses,et al.  Single-component light-emitting electrochemical cell with improved stability , 2003 .

[3]  U. Scherf,et al.  Morphological aspects of a crown ether based wide band gap LEC , 2003 .

[4]  M. Doeff,et al.  Thermal analysis of a solid polymer electrolyte and a subsequent electrochemical investigation of a lithium polymer battery , 2003 .

[5]  J. deMello,et al.  Interfacial feedback dynamics in polymer light-emitting electrochemical cells , 2002 .

[6]  C. Stern,et al.  Influence of the Anion on the Formation of Amorphous Ionically Conducting Lithium Salt Complexes with 18-C-6 and 2.2.2-Cryptand Macrocycles , 2001 .

[7]  R. Faria,et al.  Electrical and optical properties of light emitting electrochemical cells using MEH-PPV/PEO :lithium-salt blends , 2001 .

[8]  Alan J. Heeger,et al.  Semiconducting (Conjugated) Polymers as Materials for Solid‐State Lasers , 2000 .

[9]  M. Doeff,et al.  Slow recrystallization in the polymer electrolyte system poly(ethylene oxide)n-LiN(CF3SO2)2 , 2000 .

[10]  Graham,et al.  Electric field distribution in polymer light-emitting electrochemical cells , 2000, Physical review letters.

[11]  H. Becker,et al.  Development of high performance PPVs: implications of the polymer-microstructure , 2000 .

[12]  H. Meng,et al.  Facile Synthetic Route to a Novel Electroluminescent Polymer−Poly(p-phenylenevinylene) Containing a Fully Conjugated Aromatic Oxadiazole Side Chain , 1999 .

[13]  B. S. Chuah,et al.  Light-emitting devices based on a poly(p-phenylene vinylene) derivative with ion-coordinating side groups , 1999 .

[14]  O. Inganäs,et al.  Light-Emitting Electrochemical Cells from Oligo(ethylene oxide)-Substituted Polythiophenes: Evidence for in Situ Doping , 1999 .

[15]  Jun Gao,et al.  Polymer light-emitting electrochemical cells with frozen junctions , 1999 .

[16]  Nir Tessler,et al.  Lasers Based on Semiconducting Organic Materials , 1999 .

[17]  N. T. Harrison,et al.  CURRENT HEATING IN POLYMER LIGHT EMITTING DIODES , 1998 .

[18]  Richard H. Friend,et al.  Ionic space-charge effects in polymer light-emitting diodes , 1998 .

[19]  E. Smela,et al.  Planar microfabricated polymer light-emitting diodes , 1998 .

[20]  Mats Andersson,et al.  Polymer Light‐Emitting Electrochemical Cells with Frozen p‐i‐n Junction at Room Temperature , 1998 .

[21]  Q. Pei,et al.  Light‐Emitting Electrochemical Cells with Crown Ether as Solid Electrolyte , 1997 .

[22]  Jun Gao,et al.  POLYMER LIGHT-EMITTING ELECTROCHEMICAL CELLS WITH FROZEN P-I-N JUNCTION , 1997 .

[23]  D. Moses,et al.  Microplanar polymer light-emitting diodes , 1997 .

[24]  Qibing Pei,et al.  Imaging the structure of the p‐n junction in polymer light‐emitting electrochemical cells , 1996 .

[25]  David G Lidzey,et al.  Photoprocessed and micropatterned conjugated polymer LEDs , 1996 .

[26]  H. Bässler,et al.  Poly(p-phenylenevinylene) by chemical vapor deposition: Synthesis, structural evaluation, glass transition, electroluminescence, and photoluminescence , 1996 .

[27]  A. Heeger,et al.  Efficient, fast response light‐emitting electrochemical cells: Electroluminescent and solid electrolyte polymers with interpenetrating network morphology , 1996 .

[28]  A J Heeger,et al.  Polymer Light-Emitting Electrochemical Cells:  In Situ Formation of a Light-Emitting p-n Junction. , 1996, Journal of the American Chemical Society.

[29]  D. Moses,et al.  Electroluminescence from poly(phenylene vinylene) in a planar metal‐polymer‐metal structure , 1996 .

[30]  A J Heeger,et al.  Polymer Light-Emitting Electrochemical Cells , 1995, Science.

[31]  M. Armand,et al.  Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts , 1983 .

[32]  Heinrich Becker,et al.  Soluble PPVs with Enhanced Performance—A Mechanistic Approach , 2000 .

[33]  Ignacio B. Martini,et al.  Controlling Interchain Interactions in Conjugated Polymers: The Effects of Chain Morphology on Exciton-Exciton Annihilation and Aggregation in MEH-PPV Films , 2000 .