SBIBD(4k2, 2k2 +k,k2 +k) and Hadamard matrices of order 4k2 with maximal excess are equivalent

We show that anSBIBD(4k2, 2k2 +k,k2 +k) is equivalent to a regular Hadamard matrix of order 4k2 which is equivalent to an Hadamard matrix of order 4k2 with maximal excess.We find many newSBIBD(4k2, 2k2 +k,k2 +k) including those for evenk when there is an Hadamard matrix of order 2k (in particular all 2k ≤ 210) andk ∈ {1, 3, 5,..., 29, 33,..., 41, 45, 51, 53, 61,..., 69, 75, 81, 83, 89, 95, 99, 625, 32m, 25⋅32m,m ≥ 0}.

[1]  Marshall Hall,et al.  A new construction for Hadamard matrices , 1965 .

[2]  On (v, k, λ)-configurations with v=4pe , 1974 .

[3]  Jennifer Wallis,et al.  A construction for Hadamard arrays , 1972, Bulletin of the Australian Mathematical Society.

[4]  J. Seberry,et al.  A survey of base sequences, disjoint complementary sequences and OD(4t; t, t, t, t) , 1989 .

[5]  George Szekeres,et al.  Cyclotomy and complementary difference sets , 1971 .

[6]  Jennifer Seberry,et al.  A remark on the excess of Hadamard matrices and orthogonal designs , 1978 .

[7]  Albert Leon Whiteman,et al.  Some classes of Hadamard matrices with constant diagonal , 1972, Bulletin of the Australian Mathematical Society.

[8]  Stratis Kounias,et al.  The excess of Hadamard matrices and optimal designs , 1987, Discret. Math..

[9]  S. Shrikhande On a two-parameter family of balanced incomplete block designs , 1962 .

[10]  A. Street,et al.  Combinatorics of experimental design , 1987 .

[11]  M. R. Best,et al.  The excess of a hadamard matrix , 1976 .

[12]  Christos Koukouvinos,et al.  Hadamard matrices of the Williamson type of order 4·m, m=p·q an exhaustive search for m=33 , 1988, Discret. Math..

[13]  Mieko Yamada On a series of Hadamard matrices of order 2t and the maximal excess of Hadamard matrices of order 22t , 1988, Graphs Comb..

[14]  Edward T. H. Wang,et al.  The Weights of Hadamard Matrices , 1977, J. Comb. Theory, Ser. A.

[15]  Christos Koukouvinos,et al.  Construction of some Hadamard matrices with maximum excess , 1990, Discret. Math..

[16]  F. Yates,et al.  Statistical Tables for Biological, Agricultural and Medical Research. , 1939 .

[17]  Stratis Kounias,et al.  On the excess of Hadamard matrices , 1988, Discret. Math..

[18]  S. Vajda The mathematics of experimental design: incomplete block designs and Latin squares , 1967 .

[19]  A. Street,et al.  Combinatorics: room squares, sum-free sets, Hadamard matrices , 1972 .

[20]  S. Shrikhande,et al.  ON A METHOD OF CONSTRUCTING SYMMETRICAL BALANCED INCOMPLETE BLOCK DESIGNS , 1962 .

[22]  Jennifer Wallis Hadamard Matrices of Order 28m, 36m and 44m , 1973, J. Comb. Theory, Ser. A.

[23]  HIKOE ENOMOTO,et al.  On Maximal Weights of Hadamard Matrices , 1980, J. Comb. Theory, Ser. A.

[24]  Jennifer Seberry,et al.  Orthogonal Designs: Quadratic Forms and Hadamard Matrices , 1979 .

[25]  C. H. Yang Hadamard Matrices and δ-Codes of Length 3n , 1982 .

[26]  J. J. Seidel,et al.  Strongly Regular Graphs Derived from Combinatorial Designs , 1970, Canadian Journal of Mathematics.