暂无分享,去创建一个
[1] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[2] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[3] N. Z. Shor. An approach to obtaining global extremums in polynomial mathematical programming problems , 1987 .
[4] T. Rao,et al. Tensor Methods in Statistics , 1989 .
[5] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..
[6] Yurii Nesterov,et al. Squared Functional Systems and Optimization Problems , 2000 .
[7] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[8] P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .
[9] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[10] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[11] Tamara G. Kolda,et al. Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..
[12] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[13] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[14] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[15] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[16] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[17] Liqun Qi,et al. On the successive supersymmetric rank‐1 decomposition of higher‐order supersymmetric tensors , 2007, Numer. Linear Algebra Appl..
[18] Didier Henrion,et al. GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..
[19] Pierre Comon,et al. Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .
[20] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[21] Huan Wang,et al. Exact Recovery of Sparsely-Used Dictionaries , 2012, COLT.
[22] Lixing Han. An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors , 2012, 1203.5150.
[23] Shuzhong Zhang,et al. Maximum Block Improvement and Polynomial Optimization , 2012, SIAM J. Optim..
[24] Chen Ling,et al. The Best Rank-1 Approximation of a Symmetric Tensor and Related Spherical Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..
[25] Qingzhi Yang,et al. Properties and methods for finding the best rank-one approximation to higher-order tensors , 2014, Comput. Optim. Appl..
[26] Li Wang,et al. Semidefinite Relaxations for Best Rank-1 Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..
[27] Anima Anandkumar,et al. Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..
[28] Donald Goldfarb,et al. Successive Rank-One Approximations for Nearly Orthogonally Decomposable Symmetric Tensors , 2015, SIAM J. Matrix Anal. Appl..
[29] John Wright,et al. Complete dictionary recovery over the sphere , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).
[30] Yu-Hong Dai,et al. A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors , 2015, Numer. Linear Algebra Appl..
[31] Shiqian Ma,et al. Tensor principal component analysis via convex optimization , 2012, Math. Program..
[32] Pierre Comon,et al. A Finite Algorithm to Compute Rank-1 Tensor Approximations , 2016, IEEE Signal Processing Letters.
[33] Z. Wen,et al. A note on semidefinite programming relaxations for polynomial optimization over a single sphere , 2016 .
[34] Elina Robeva,et al. Orthogonal Decomposition of Symmetric Tensors , 2014, SIAM J. Matrix Anal. Appl..
[35] Yun S. Song,et al. Orthogonal Tensor Decompositions via Two-Mode Higher-Order SVD (HOSVD) , 2016, ArXiv.