Hierarchical Cooperation Improves Delay in Cognitive Radio Networks with Heterogeneous Mobile Secondary Nodes

This paper characterizes the throughput and delay performance of Cognitive Radio Networks (CRNs), where both primary and secondary networks coexist in a unit torus. Specifically, the primary network consists of static primary nodes (PNs) of density <inline-formula><tex-math notation="LaTeX">$n$</tex-math><alternatives><mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="wang-ieq1-2885268.gif"/></alternatives></inline-formula>, which have a higher priority to access the spectrum. In contrast, the secondary network consists of mobile secondary nodes (SNs) of density <inline-formula><tex-math notation="LaTeX">$m=n^{\beta }$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>m</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mi>β</mml:mi></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href="wang-ieq2-2885268.gif"/></alternatives></inline-formula> with <inline-formula><tex-math notation="LaTeX">$\beta \geq 1$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>β</mml:mi><mml:mo>≥</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="wang-ieq3-2885268.gif"/></alternatives></inline-formula>, which move according to a hybrid random walk mobility model and have opportunistic access to the spectrum without affecting primary packet transmissions. Motivated by the fact that cooperation between primary and secondary nodes leads to possible improvement on the performance of CRNs, as well as the fact that the heterogeneous moving regions of secondary nodes will bring about further improvement, we propose a novel hierarchical cooperative scheduling mechanism, where secondary nodes serve as relays for primary packet transmissions by exploiting their mobility heterogeneity and geographic information. Our findings include: (i) For the primary network, stronger mobility heterogeneity of secondary nodes leads to better delay performance of the primary network, and meanwhile the delay scaling can be significantly reduced to <inline-formula><tex-math notation="LaTeX">$\Theta (n^{\sqrt{\beta /{(4\;\log n)}}}\log ^{3/2}n)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>Θ</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:msqrt><mml:mrow><mml:mi>β</mml:mi><mml:mo>/</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>4</mml:mn><mml:mspace width="0.277778em"/><mml:mo form="prefix">log</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:msqrt></mml:msup><mml:msup><mml:mo form="prefix">log</mml:mo><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="wang-ieq4-2885268.gif"/></alternatives></inline-formula> when a near-optimal per-node throughput of <inline-formula><tex-math notation="LaTeX">$\Theta ({1}/{\log n})$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>Θ</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mrow><mml:mo form="prefix">log</mml:mo><mml:mi>n</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="wang-ieq5-2885268.gif"/></alternatives></inline-formula> is obtained. (ii) For the secondary network, we also adopt a similar hierarchical cooperative scheduling mechanism, and obtain a near-optimal per-node throughput of <inline-formula><tex-math notation="LaTeX">$\Theta {(1/{\log m})}$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>Θ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mrow><mml:mo form="prefix">log</mml:mo><mml:mi>m</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="wang-ieq6-2885268.gif"/></alternatives></inline-formula> with the delay scaling of <inline-formula><tex-math notation="LaTeX">$\Theta ({m^{1-(1/\sqrt{\log m})}})$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>Θ</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>m</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>-</mml:mo><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:msqrt><mml:mrow><mml:mo form="prefix">log</mml:mo><mml:mi>m</mml:mi></mml:mrow></mml:msqrt><mml:mo>)</mml:mo></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="wang-ieq7-2885268.gif"/></alternatives></inline-formula>. (iii) The delay of secondary source-destination pairs is determined by the moving region of destinations and has no relation with sources. Our work provides deeper understandings of the cooperation, heterogeneous mobility, and geographic information on the performance of CRNs, and sheds light on designing more efficient CRNs.

[1]  Michele Garetto,et al.  Content-centric wireless networks with limited buffers: When mobility hurts , 2013, 2013 Proceedings IEEE INFOCOM.

[2]  Dan Xu,et al.  Per User Throughput in Large Wireless Networks , 2008, 2008 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks.

[3]  Athanasios V. Vasilakos,et al.  CDC: Compressive Data Collection for Wireless Sensor Networks , 2015, IEEE Transactions on Parallel and Distributed Systems.

[4]  Linghe Kong,et al.  Mobility increases the surface coverage of distributed sensor networks , 2013, Comput. Networks.

[5]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[6]  Xiaoying Gan,et al.  Throughput and Delay in Heterogeneous Cognitive Radio Networks with Cooperative Secondary Users , 2015, IEEE Transactions on Parallel and Distributed Systems.

[7]  Tracy Camp,et al.  A survey of mobility models for ad hoc network research , 2002, Wirel. Commun. Mob. Comput..

[8]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[9]  Yi Qin,et al.  Near-Optimal Scheme for Cognitive Radio Networks With Heterogeneous Mobile Secondary Users , 2015, IEEE Transactions on Communications.

[10]  Ness B. Shroff,et al.  Delay and Capacity Trade-Offs in Mobile Ad Hoc Networks: A Global Perspective , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[11]  C. Cordeiro,et al.  IEEE 802.22: the first worldwide wireless standard based on cognitive radios , 2005, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005..

[12]  R. Srikant,et al.  Optimal Delay–Throughput Tradeoffs in Mobile Ad Hoc Networks , 2008, IEEE Transactions on Information Theory.

[13]  Xinbing Wang,et al.  Cooperation Improves Delay in Cognitive Networks With Hybrid Random Walk , 2015, IEEE Transactions on Communications.

[14]  Xiaoying Gan,et al.  Mobility Reduces the Number of Secondary Users in Cognitive Radio Networks , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[15]  Xinbing Wang,et al.  Scaling laws for cognitive radio network with heterogeneous mobile secondary users , 2012, 2012 Proceedings IEEE INFOCOM.

[16]  Devavrat Shah,et al.  Throughput-delay trade-off in energy constrained wireless networks , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[17]  Sae-Young Chung,et al.  Cognitive networks achieve throughput scaling of a homogeneous network , 2009, WiOpt.

[18]  Joseph Mitola,et al.  Cognitive radio: making software radios more personal , 1999, IEEE Wirel. Commun..

[19]  Yonghong Zeng,et al.  Sensing-Throughput Tradeoff for Cognitive Radio Networks , 2008, IEEE Trans. Wirel. Commun..

[20]  Theodore S. Rappaport,et al.  Wireless Communications: Principles and Practice (2nd Edition) by , 2012 .

[21]  Shuguang Cui,et al.  Throughput and Delay Scaling in Supportive Two-Tier Networks , 2012, IEEE Journal on Selected Areas in Communications.

[22]  V. Tarokh,et al.  Cognitive radio networks , 2008, IEEE Signal Processing Magazine.

[23]  Xinbing Wang,et al.  Network Connectivity With Inhomogeneous Correlated Mobility , 2016, IEEE Transactions on Wireless Communications.

[24]  David Tse,et al.  Mobility increases the capacity of ad-hoc wireless networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[25]  Shuguang Cui,et al.  Scaling Laws for Overlaid Wireless Networks: A Cognitive Radio Network vs. a Primary Network , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[26]  Joseph Mitola,et al.  Cognitive Radio An Integrated Agent Architecture for Software Defined Radio , 2000 .

[27]  Yuguang Fang,et al.  Smooth Trade-Offs between Throughput and Delay in Mobile Ad Hoc Networks , 2012, IEEE Transactions on Mobile Computing.

[28]  Eytan Modiano,et al.  Capacity and delay tradeoffs for ad hoc mobile networks , 2005, IEEE Trans. Inf. Theory.

[29]  Vahid Tarokh,et al.  Scaling laws of single-hop cognitive networks , 2009, IEEE Transactions on Wireless Communications.

[30]  Xinbing Wang,et al.  Delay and Capacity Tradeoff Analysis for MotionCast , 2011, IEEE/ACM Transactions on Networking.

[31]  Richard J. La,et al.  Distributional Convergence of Intermeeting Times under the Generalized Hybrid Random Walk Mobility Model , 2010, IEEE Transactions on Mobile Computing.

[32]  Devavrat Shah,et al.  Optimal throughput-delay scaling in wireless networks - part I: the fluid model , 2006, IEEE Transactions on Information Theory.

[33]  Ying-Chang Liang,et al.  Cognitive radio network architecture: part I -- general structure , 2008, ICUIMC '08.