Weak localization and electron–electron interactions in few layer black phosphorus devices

Few layer phosphorene (FLP) devices are extensively studied due to their unique electronic properties and potential applications on nano-electronics. Here we present magnetotransport studies which reveal electron–electron interactions as the dominant scattering mechanism in hexagonal boron nitride-encapsulated FLP devices. From weak localization measurements, we estimate the electron dephasing length to be 30 to 100 nm at low temperatures, which exhibits a strong dependence on carrier density n and a power-law dependence on temperature (∼T−0.4). These results establish that the dominant scattering mechanism in FLP is electron–electron interactions.

[1]  K. Kim Dirac semimetal state in black phosphorus , 2017 .

[2]  F. Telesio,et al.  Dephasing in strongly anisotropic black phosphorus , 2016, 1607.08677.

[3]  P. Ye,et al.  Weak localization in few-layer black phosphorus , 2016, 1602.03608.

[4]  H. Choi,et al.  Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus , 2015, Science.

[5]  L. Li,et al.  Quantum Hall effect in black phosphorus two-dimensional electron system. , 2015, Nature nanotechnology.

[6]  F. Xia,et al.  The renaissance of black phosphorus , 2015, Proceedings of the National Academy of Sciences.

[7]  Kenji Watanabe,et al.  Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures , 2014, 1412.0717.

[8]  R. Martel,et al.  Two-dimensional magnetotransport in a black phosphorus naked quantum well , 2014, Nature Communications.

[9]  A. Zunger,et al.  Switching a normal insulator into a topological insulator via electric field with application to phosphorene. , 2014, Nano letters.

[10]  R. Soklaski,et al.  Layer-Controlled Band Gap and Anisotropic Excitons in Phosphorene , 2014, 1402.4192.

[11]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[12]  X. Kong,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature Communications.

[13]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[14]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[15]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[16]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[17]  S. Shi,et al.  Ab initio studies on atomic and electronic structures of black phosphorus , 2010 .

[18]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[19]  G. Bergmann,et al.  Weak localization in thin films: a time-of-flight experiment with conduction electrons , 1984 .

[20]  Shoichi Endo,et al.  Electrical Properties of Black Phosphorus Single Crystals , 1983 .

[21]  H. Fukuyama,et al.  Inelastic scattering time in two-dimensional disordered metals , 1983 .

[22]  A. Aronov,et al.  Effects of electron-electron collisions with small energy transfers on quantum localisation , 1982 .

[23]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[24]  Y. Maruyama,et al.  Synthesis and some properties of black phosphorus single crystals , 1981 .

[25]  A. I. Larkin,et al.  Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System , 1980 .

[26]  Douglas M. Warschauer,et al.  Electrical and Optical Properties of Crystalline Black Phosphorus , 1963 .

[27]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .

[28]  Xianfan Xu,et al.  Phosphorene: An Unexplored 2D Semiconductor with a High Hole , 2014 .

[29]  Risto M. Nieminen,et al.  Electronic Properties of Two-Dimensional Systems , 1988 .

[30]  G. Bergmann Weak Localization in Thin Films , 1986 .

[31]  E. I. Parkhomenko Electrical properties of rocks , 1967 .