Effective bounds for the measure of rotations

A fundamental question in dynamical systems is to identify regions of phase/parameter space satisfying a given property (stability, linearization, etc). Given a family of analytic circle diffeomorphisms depending on a parameter, we obtain effective (almost optimal) lower bounds of the Lebesgue measure of the set of parameters that are conjugated to a rigid rotation. We estimate this measure using an a posteriori KAM scheme that relies on quantitative conditions that are checkable using computer-assistance. We carefully describe how the hypotheses in our theorems are reduced to a finite number of computations, and apply our methodology to the case of the Arnold family. Hence we show that obtaining non-asymptotic lower bounds for the applicability of KAM theorems is a feasible task provided one has an a posteriori theorem to characterize the problem. Finally, as a direct corollary, we produce explicit asymptotic estimates in the so called local reduction setting (à la Arnold) which are valid for a global set of rotations.

[1]  T. Morrison,et al.  Dynamical Systems , 2021, Nature.

[2]  A. Luque,et al.  A-posteriori KAM theory with optimal estimates for partially integrable systems , 2017, Journal of Differential Equations.

[3]  Marta Canadell,et al.  Computation of Quasiperiodic Normally Hyperbolic Invariant Tori: Rigorous Results , 2017, J. Nonlinear Sci..

[4]  Marta Canadell,et al.  Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown , 2017, J. Nonlinear Sci..

[5]  À. Haro,et al.  Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown , 2017, Journal of Nonlinear Science.

[6]  À. Haro,et al.  Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach , 2016, Foundations of Computational Mathematics.

[7]  A. Knauf H. Scott Dumas: “The KAM Story: A Friendly Introduction to the Content, History, and Significance of Classical Kolmogorov-Arnold-Moser Theory” , 2016 .

[8]  J. Mondelo,et al.  The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations , 2016 .

[9]  Jordi-Lluís Figueras,et al.  Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach , 2016, Found. Comput. Math..

[10]  J. Yorke,et al.  Quantitative quasiperiodicity , 2015, 1601.06051.

[11]  L. Chierchia,et al.  On the measure of Lagrangian invariant tori in nearly--integrable mechanical systems (draft) , 2015, 1503.08145.

[12]  H Scott Dumas,et al.  The KAM Story:A Friendly Introduction to the Content, History, and Significance of Classical Kolmogorov–Arnold–Moser Theory , 2014 .

[13]  B. Fayad,et al.  Around the stability of KAM tori , 2013, 1311.7334.

[14]  A. Neishtadt,et al.  Lagrangian tori near resonances of near-integrable Hamiltonian systems , 2013, 1311.0132.

[15]  R. Llave,et al.  A KAM theory for conformally symplectic systems: Efficient algorithms and their validation , 2013 .

[16]  A. Enciso,et al.  Existence of knotted vortex tubes in steady Euler flows , 2012, 1210.6271.

[17]  Jordi-Lluís Figueras,et al.  Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map. , 2012, Chaos.

[18]  Jordi-Lluís Figueras,et al.  Reliable Computation of Robust Response Tori on the Verge of Breakdown , 2012, SIAM J. Appl. Dyn. Syst..

[19]  W. Tucker Validated Numerics: A Short Introduction to Rigorous Computations , 2011 .

[20]  R. Llave,et al.  Differentiability at the Tip of Arnold Tongues for Diophantine Rotations: Numerical Studies and Renormalization Group Explanations , 2011 .

[21]  J. Villanueva,et al.  A KAM theorem without action-angle variables for elliptic lower dimensional tori , 2011 .

[22]  L. Chierchia,et al.  The planetary N-body problem: symplectic foliation, reductions and invariant tori , 2011 .

[23]  R. Llave,et al.  Computation of whiskered invariant tori and their associated manifolds: new fast algorithms , 2010, 1004.5231.

[24]  J. Villanueva,et al.  Numerical computation of rotation numbers of quasi-periodic planar curves , 2009 .

[25]  R. Llave,et al.  Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps , 2009 .

[26]  R. Llave,et al.  Construction of invariant whiskered tori by a parameterization method. Part I: Maps and flows in finite dimensions , 2009, 0903.0311.

[27]  J. Villanueva,et al.  Computation of derivatives of the rotation number for parametric families of circle diffeomorphisms , 2008 .

[28]  C. Simó,et al.  Stability islands in the vicinity of separatrices of near-integrable symplectic maps , 2008 .

[29]  A. Teplinsky,et al.  Herman’s theory revisited , 2007, 0707.0075.

[30]  T. M. Seara,et al.  On the numerical computation of Diophantine rotation numbers of analytic circle maps , 2006 .

[31]  R. Llave,et al.  KAM theory without action-angle variables , 2005 .

[32]  Jacques Féjoz Démonstration du ‘théorème d'Arnold’ sur la stabilité du système planétaire (d'après Herman) , 2004, Ergodic Theory and Dynamical Systems.

[33]  Jacques Laskar,et al.  Frequency Map and Global Dynamics in the Solar System I , 2001 .

[34]  A. Giorgilli,et al.  Invariant Tori in the Secular Motions of the Three-body Planetary Systems , 2000 .

[35]  U. Locatelli Three-body planetary problem: study of KAM stability for the secular part of the Hamiltonian , 1998 .

[36]  A. Celletti,et al.  On the Stability of Realistic Three-Body Problems , 1997 .

[37]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[38]  R. Pavani A numerical approximation of the rotation number , 1995 .

[39]  H. Bruin Numerical determination of the continued fraction expansion of the rotation number , 1992 .

[40]  Jacques Laskar,et al.  The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping , 1992 .

[41]  Y. Katznelson,et al.  The differentiability of the conjugation of certain diffeomorphisms of the circle , 1989, Ergodic Theory and Dynamical Systems.

[42]  J. Laskar A numerical experiment on the chaotic behaviour of the Solar System , 1989, Nature.

[43]  Y. Sinai,et al.  Smoothness of conjugacies of diffeomorphisms of the circle with rotations , 1989 .

[44]  Luigi Chierchia,et al.  Construction of analytic KAM surfaces and effective stability bounds , 1988 .

[45]  Konstantin Khanin,et al.  A new proof of M. Herman's theorem , 1987 .

[46]  J. Pöschel Integrability of hamiltonian systems on cantor sets , 1982 .

[47]  M. R. Herman Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations , 1979 .

[48]  G. Glauberman Proof of Theorem A , 1977 .

[49]  H. Rüssmann On optimal estimates for the solutions of linear difference equations on the circle , 1976 .

[50]  W. Worlton,et al.  The Art of Computer Programming , 1968 .

[51]  J. J. Stoker On the stability of mechanical systems , 1955 .

[52]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[53]  J. Mondelo,et al.  The parameterization method for invariant manifolds , 2016 .

[54]  Luigi Chierchia,et al.  KAM stability and celestial mechanics , 2007 .

[55]  Ernest Fontich Julià,et al.  The parameterization method for invariant manifolds , 2006 .

[56]  M. Alonso,et al.  On the numerical computation of Diophantine rotation numbers of analytic circle maps , 2004 .

[57]  Michael Herman,et al.  Some open problems in dynamical systems. , 1998 .

[58]  D. Knuth The art of computer programming: V.2.: Seminumerica algorithms , 1997 .

[59]  George Huitema,et al.  Quasi-periodic motions in families of dynamical systems , 1996 .

[60]  June Mun Lai Loh The differentiability of the conjugation of certain diffeomorphisms of the circle , 1992 .

[61]  R. de la Llave,et al.  Accurate Strategies for K.A.M. Bounds and Their Implementation , 1991 .

[62]  J. Yoccoz,et al.  Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne , 1984 .

[63]  Jürgen Pöschel,et al.  Integrability of Hamiltonian systems on cantor sets , 1982 .

[64]  A. Neishtadt Estimates in the kolmogorov theorem on conservation of conditionally periodic motions , 1981 .

[65]  M. R. Herman,et al.  Mesure de Lebesgue et Nombre de Rotation , 1977 .

[66]  E. Zehnder,et al.  Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .

[67]  J. Moser On invariant curves of area-preserving mappings of an anulus , 1962 .

[68]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .