Effective bounds for the measure of rotations
暂无分享,去创建一个
[1] T. Morrison,et al. Dynamical Systems , 2021, Nature.
[2] A. Luque,et al. A-posteriori KAM theory with optimal estimates for partially integrable systems , 2017, Journal of Differential Equations.
[3] Marta Canadell,et al. Computation of Quasiperiodic Normally Hyperbolic Invariant Tori: Rigorous Results , 2017, J. Nonlinear Sci..
[4] Marta Canadell,et al. Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown , 2017, J. Nonlinear Sci..
[5] À. Haro,et al. Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown , 2017, Journal of Nonlinear Science.
[6] À. Haro,et al. Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach , 2016, Foundations of Computational Mathematics.
[7] A. Knauf. H. Scott Dumas: “The KAM Story: A Friendly Introduction to the Content, History, and Significance of Classical Kolmogorov-Arnold-Moser Theory” , 2016 .
[8] J. Mondelo,et al. The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations , 2016 .
[9] Jordi-Lluís Figueras,et al. Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach , 2016, Found. Comput. Math..
[10] J. Yorke,et al. Quantitative quasiperiodicity , 2015, 1601.06051.
[11] L. Chierchia,et al. On the measure of Lagrangian invariant tori in nearly--integrable mechanical systems (draft) , 2015, 1503.08145.
[12] H Scott Dumas,et al. The KAM Story:A Friendly Introduction to the Content, History, and Significance of Classical Kolmogorov–Arnold–Moser Theory , 2014 .
[13] B. Fayad,et al. Around the stability of KAM tori , 2013, 1311.7334.
[14] A. Neishtadt,et al. Lagrangian tori near resonances of near-integrable Hamiltonian systems , 2013, 1311.0132.
[15] R. Llave,et al. A KAM theory for conformally symplectic systems: Efficient algorithms and their validation , 2013 .
[16] A. Enciso,et al. Existence of knotted vortex tubes in steady Euler flows , 2012, 1210.6271.
[17] Jordi-Lluís Figueras,et al. Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map. , 2012, Chaos.
[18] Jordi-Lluís Figueras,et al. Reliable Computation of Robust Response Tori on the Verge of Breakdown , 2012, SIAM J. Appl. Dyn. Syst..
[19] W. Tucker. Validated Numerics: A Short Introduction to Rigorous Computations , 2011 .
[20] R. Llave,et al. Differentiability at the Tip of Arnold Tongues for Diophantine Rotations: Numerical Studies and Renormalization Group Explanations , 2011 .
[21] J. Villanueva,et al. A KAM theorem without action-angle variables for elliptic lower dimensional tori , 2011 .
[22] L. Chierchia,et al. The planetary N-body problem: symplectic foliation, reductions and invariant tori , 2011 .
[23] R. Llave,et al. Computation of whiskered invariant tori and their associated manifolds: new fast algorithms , 2010, 1004.5231.
[24] J. Villanueva,et al. Numerical computation of rotation numbers of quasi-periodic planar curves , 2009 .
[25] R. Llave,et al. Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps , 2009 .
[26] R. Llave,et al. Construction of invariant whiskered tori by a parameterization method. Part I: Maps and flows in finite dimensions , 2009, 0903.0311.
[27] J. Villanueva,et al. Computation of derivatives of the rotation number for parametric families of circle diffeomorphisms , 2008 .
[28] C. Simó,et al. Stability islands in the vicinity of separatrices of near-integrable symplectic maps , 2008 .
[29] A. Teplinsky,et al. Herman’s theory revisited , 2007, 0707.0075.
[30] T. M. Seara,et al. On the numerical computation of Diophantine rotation numbers of analytic circle maps , 2006 .
[31] R. Llave,et al. KAM theory without action-angle variables , 2005 .
[32] Jacques Féjoz. Démonstration du ‘théorème d'Arnold’ sur la stabilité du système planétaire (d'après Herman) , 2004, Ergodic Theory and Dynamical Systems.
[33] Jacques Laskar,et al. Frequency Map and Global Dynamics in the Solar System I , 2001 .
[34] A. Giorgilli,et al. Invariant Tori in the Secular Motions of the Three-body Planetary Systems , 2000 .
[35] U. Locatelli. Three-body planetary problem: study of KAM stability for the secular part of the Hamiltonian , 1998 .
[36] A. Celletti,et al. On the Stability of Realistic Three-Body Problems , 1997 .
[37] V. Arnold,et al. Mathematical aspects of classical and celestial mechanics , 1997 .
[38] R. Pavani. A numerical approximation of the rotation number , 1995 .
[39] H. Bruin. Numerical determination of the continued fraction expansion of the rotation number , 1992 .
[40] Jacques Laskar,et al. The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping , 1992 .
[41] Y. Katznelson,et al. The differentiability of the conjugation of certain diffeomorphisms of the circle , 1989, Ergodic Theory and Dynamical Systems.
[42] J. Laskar. A numerical experiment on the chaotic behaviour of the Solar System , 1989, Nature.
[43] Y. Sinai,et al. Smoothness of conjugacies of diffeomorphisms of the circle with rotations , 1989 .
[44] Luigi Chierchia,et al. Construction of analytic KAM surfaces and effective stability bounds , 1988 .
[45] Konstantin Khanin,et al. A new proof of M. Herman's theorem , 1987 .
[46] J. Pöschel. Integrability of hamiltonian systems on cantor sets , 1982 .
[47] M. R. Herman. Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations , 1979 .
[48] G. Glauberman. Proof of Theorem A , 1977 .
[49] H. Rüssmann. On optimal estimates for the solutions of linear difference equations on the circle , 1976 .
[50] W. Worlton,et al. The Art of Computer Programming , 1968 .
[51] J. J. Stoker. On the stability of mechanical systems , 1955 .
[52] H. Poincaré,et al. Les méthodes nouvelles de la mécanique céleste , 1899 .
[53] J. Mondelo,et al. The parameterization method for invariant manifolds , 2016 .
[54] Luigi Chierchia,et al. KAM stability and celestial mechanics , 2007 .
[55] Ernest Fontich Julià,et al. The parameterization method for invariant manifolds , 2006 .
[56] M. Alonso,et al. On the numerical computation of Diophantine rotation numbers of analytic circle maps , 2004 .
[57] Michael Herman,et al. Some open problems in dynamical systems. , 1998 .
[58] D. Knuth. The art of computer programming: V.2.: Seminumerica algorithms , 1997 .
[59] George Huitema,et al. Quasi-periodic motions in families of dynamical systems , 1996 .
[60] June Mun Lai Loh. The differentiability of the conjugation of certain diffeomorphisms of the circle , 1992 .
[61] R. de la Llave,et al. Accurate Strategies for K.A.M. Bounds and Their Implementation , 1991 .
[62] J. Yoccoz,et al. Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne , 1984 .
[63] Jürgen Pöschel,et al. Integrability of Hamiltonian systems on cantor sets , 1982 .
[64] A. Neishtadt. Estimates in the kolmogorov theorem on conservation of conditionally periodic motions , 1981 .
[65] M. R. Herman,et al. Mesure de Lebesgue et Nombre de Rotation , 1977 .
[66] E. Zehnder,et al. Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .
[67] J. Moser. On invariant curves of area-preserving mappings of an anulus , 1962 .
[68] A. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .