On-line finite automata for addition in some numeration systems

We consider numeration systems where the base is a negative integer, or a complex number which is a root of a negative integer. We give parallel algorithms for addition in these numeration systems, from which we derive on-line algorithms realized by finite automata. A general construction relating addition in base β and addition in base βm is given. Results on addition in base , where b is a relative integer, follow. We also show that addition in base the golden ratio is computable by an on-line finite automaton, but is not parallelizable.

[1]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[2]  Donald E. Knuth,et al.  A imaginary number system , 1960, Commun. ACM.

[3]  Algirdas Avizienis,et al.  Signed-Digit Numbe Representations for Fast Parallel Arithmetic , 1961, IRE Trans. Electron. Comput..

[4]  Christiane Frougny Parallel and On-Line Addition in Negative Base and Some Complex Number Systems , 1996, Euro-Par, Vol. II.

[5]  Jean Berstel,et al.  Fibonacci Words — A Survey , 1986 .

[6]  Jacques Sakarovitch,et al.  Synchronisation déterministe des automates à délai borné , 1998, Theor. Comput. Sci..

[7]  Kiamal Pekmestzi,et al.  Complex number multipliers , 1989 .

[8]  A. Avizeinis,et al.  Signed Digit Number Representations for Fast Parallel Arithmetic , 1961 .

[9]  Tatsuo Higuchi,et al.  Real/complex reconfigurable arithmetic using redundant complex number systems , 1997, Proceedings 13th IEEE Sympsoium on Computer Arithmetic.

[10]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[11]  Milos D. Ercegovac,et al.  On-Line Algorithms for Division and Multiplication , 1977, IEEE Transactions on Computers.

[12]  Taoufik Safer Radix Representations of Algebraic Number Fields and Finite Automata , 1998, STACS.

[13]  David W. Matula,et al.  Basic digit sets for radix representation , 1982, JACM.

[14]  Walter Penney,et al.  A ``Binary'' System for Complex Numbers , 1965, JACM.

[15]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[16]  James E. Robertson,et al.  Logical design of a redundant binary adder , 1978, 1978 IEEE 4th Symposium onomputer Arithmetic (ARITH).

[17]  William J. Gilbert Radix representations of quadratic fields , 1981 .

[18]  Jacques Sakarovitch,et al.  Deterministic synchronization of automations with bounded delay , 1998 .

[19]  Yvan Herreros Contribution à l'arithmétique des ordinateurs , 1991 .

[20]  Odile Vaysse Addition molle et fonctions p-locales , 1986 .

[21]  Christiane Frougny Confluent Linear Numeration Systems , 1992, Theor. Comput. Sci..

[22]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[23]  Christian Choffrut,et al.  Une Caracterisation des Fonctions Sequentielles et des Fonctions Sous-Sequentielles en tant que Relations Rationnelles , 1977, Theor. Comput. Sci..

[24]  Yvan Herreros,et al.  New redundant representations of complex numbers and vectors , 1991, [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic.

[25]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[26]  Milos D. Ercegovac,et al.  On-Line Arithmetic: An Overview , 1984, Optics & Photonics.

[27]  Jean-Michel Muller Some Characterizations of Functions Computable in On-Line Arithmetic , 1994, IEEE Trans. Computers.