Modulus, Fracture Strength, and Brittle vs. Plastic Response of the Outer Shell of Arc-grown Multi-walled Carbon Nanotubes

The fracture strengths and elastic moduli of arc-grown multi-walled carbon nanotubes (MWCNTs) were measured by tensile loading inside of a scanning electron microscope (SEM). Eighteen tensile tests were performed on 14 MWCNTs with three of them being tested multiple times (3×, 2×, and 2×, respectively). All the MWCNTs fractured in the “sword-in-sheath” mode. The diameters of the MWCNTs were measured in a transmission electron microscope (TEM), and the outer diameter with an assumed 0.34 nm shell thickness was used to convert measured load-displacement data to stress and strain values. An unusual yielding before fracture was observed in two tensile loading experiments. The 18 outer shell fracture strength values ranged from 10 to 66 GPa, and the 18 Young's modulus values, obtained from a linear fit of the stress–strain data, ranged from 620 to 1,200 GPa, with a mean of 940 GPa. The possible influence of stress concentration at the clamps is discussed.

[1]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[2]  Mark J. Dyer,et al.  Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope , 1999 .

[3]  M. Nardelli,et al.  Brittle and Ductile Behavior in Carbon Nanotubes , 1998 .

[4]  Rodney S. Ruoff,et al.  Analysis of a microelectromechanical system testing stage for tensile loading of nanostructures , 2006 .

[5]  R. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[6]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[7]  Boris I. Yakobson,et al.  Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes , 1998 .

[8]  K. Méténier,et al.  Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes , 1999 .

[9]  D. Vollath,et al.  Mechanical and Thermal Properties , 1986 .

[10]  John E. Anthony,et al.  Thermogravimetric Analysis of the Oxidation of Multiwalled Carbon Nanotubes: Evidence for the Role of Defect Sites in Carbon Nanotube Chemistry , 2002 .

[11]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[12]  J. Boettger,et al.  All-electron full-potential calculation of the electronic band structure, elastic constants, and equation of state for graphite , 1997 .

[13]  Nicola Pugno,et al.  Quantized fracture mechanics , 2004 .

[14]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[15]  Rodney S. Ruoff,et al.  Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes , 2000 .

[16]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[17]  Ted Belytschko,et al.  Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations , 2005 .

[18]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[19]  K. An,et al.  High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing , 2001 .

[20]  H. Dai,et al.  High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. , 2004, Nano letters.

[21]  J. Sader,et al.  Method for the calibration of atomic force microscope cantilevers , 1995 .

[22]  Gregory J. Wagner,et al.  Mechanical resonance of quartz microfibers and boundary condition effects , 2004 .

[23]  T. Belytschko,et al.  The role of vacancy defects and holes in the fracture of carbon nanotubes , 2004 .

[24]  François Béguin,et al.  Catalytically grown carbon nanotubes of small diameter have a high Young's modulus. , 2005, Nano letters.

[25]  Eyal Zussman,et al.  Mechanics of hydrogenated amorphous carbon deposits from electron-beam-induced deposition of a paraffin precursor , 2005 .

[26]  G. Briggs,et al.  Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes , 2004 .

[27]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[28]  M. Dresselhaus Carbon nanotubes , 1995 .

[29]  R. Ruoff,et al.  Modeling of carbon nanotube clamping in tensile tests , 2005 .

[30]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[31]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[32]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[33]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[34]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[35]  Frank T. Fisher,et al.  Direct Observation of Polymer Sheathing in Carbon Nanotube-Polycarbonate Composites , 2003 .

[36]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[37]  Qian Wang,et al.  Suspended carbon nanotube quantum wires with two gates. , 2005, Small.

[38]  Wei Zhu,et al.  On-chip vacuum microtriode using carbon nanotube field emitters , 2002 .

[39]  Rodney S. Ruoff,et al.  Mechanics of Crystalline Boron Nanowires , 2005 .

[40]  M. Fenstermacher,et al.  First tests of molybdenum mirrors for ITER diagnostics in DIII-D divertor , 2006 .

[41]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[42]  Jian Ping Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997 .

[43]  Zhong Lin Wang,et al.  Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM , 2000 .

[44]  Eyal Zussman,et al.  Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers , 2005 .

[45]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .