Lower bounds for Z-numbers

Let p/q be a rational noninteger number with p > q ≥ 2. A real number λ ≥ 0 is a Z p/q -number if {λ(p/q) n } < 1/q for every nonnegative integer n, where {x} denotes the fractional part of x. We develop several algorithms to search for Z p/q -numbers, and use them to determine lower bounds on such numbers for several p and q. It is shown, for instance, that if there is a Z 3/2 -number, then it is greater than 2 57 . We also explore some connections between these problems and some questions regarding iterated maps on integers.

[1]  Compositio Mathematica,et al.  Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins , 1935 .

[2]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[3]  Nick Lord,et al.  Pisot and Salem Numbers , 1991 .

[4]  Répartition (mod 1) des puissances successives des nombres réels , 1946 .

[5]  Günther Wirsching,et al.  The Dynamical System Generated by the 3n+1 Function , 1998 .

[6]  Miguel A. Lerma CONSTRUCTION OF A NUMBER GREATER THAN ONE WHOSE POWERS ARE UNIFORMLY DISTRIBUTED MODULO ONE , 1996 .

[7]  A. Dubickas There are infinitely many limit points of the fractional parts of powers , 2005, math/0512314.

[8]  J. Simons,et al.  Theoretical and computational bounds for m-cycles of the 3n + 1 problem , 2005 .

[9]  A. Dubickas Arithmetical Properties of Powers of Algebraic Numbers , 2006 .

[10]  Jeffrey C. Lagarias,et al.  The 3x + 1 Problem: an Annotated Bibliography , 2006 .

[11]  I. Krasikov,et al.  Bounds for the 3x+1 problem using difference inequalities , 2002, math/0205002.

[12]  Jeffrey C. Lagarias,et al.  Lower bounds for the total stopping time of 3x + 1 iterates , 2001, Math. Comput..

[13]  K. Mahler,et al.  An unsolved problem on the powers of 3/2 , 1968, Journal of the Australian Mathematical Society.

[14]  Michael C. Sullivan Symbolic Dynamics and its Applications , 2005 .

[15]  N. J. A. Sloane,et al.  Approximate Squaring , 2003, Exp. Math..

[16]  Y. Bugeaud Linear mod one transformations and the distribution of fractional parts {ξ(p/q)ⁿ} , 2004 .

[17]  Jeffrey C. Lagarias,et al.  The 3x + 1 Problem and its Generalizations , 1985 .

[18]  J. Lagarias,et al.  On the range of fractional parts {ξ(p/q)ⁿ} , 1995 .