Archaeal and bacterial assemblages in the Oxygen Minimum Zone of the upwelling ecosystem off Central Chile as determined by organic biomarkers

Se utilizaron biomarcadores organicos en para investigar la influencia de cambios estacionales en los niveles de oxigenacion y la quimica del agua sobre la distribucion de arqueas y bacterias en la columna de agua y los sedimentos superficiales de la plataforma continental frente a Chile central, un area influenciada por surgencia estacional asociada al desarrollo de una zona de minimo oxigeno. Nuestro interes es establecer si la ocurrencia de arquea y bacteria responde a la oxigenacion y quimica del agua para lo cual analizamos gliceroles dialquil gliceroles tetra-eteres (GDGTs) isoprenoides arqueanos (i) y ramificados bacterianos (r). Nuestros resultados, combinados con datos moleculares de observaciones durante un ano en el mismo lugar y profundidades del sitio de estudio indican la presencia y dominancia del grupo arqueano marino- pelagico Thaumarchaeota. Los cambios observados en la distribucion de iGDGTs podrian explicarse por (i) la presencia de poblaciones de arqueas marinas en la capa de agua sub-oxica, filogeneticamente diferentes a las de aguas superficiales, (ii) cambio en la contribucion relativa de Euryarchaeota con profundidad, y (iii) una relacion entre Thaumarchaeota y factores ambientales distintos a la temperatura. Los GDGTs ramificados fueron mas abundantes en la capa oxica superior durante el periodo de no-surgencia, tal vez influenciado por la alta descarga de rios, mientras que su diversidad fue mas alta en el agua sub-oxica. Nuestros resultados indican una segregacion vertical de los GDGTs isoprenoides y ramificados, con el predominio de biomarcadores arqueanos durante el periodo de baja productividad.

[1]  E. Delong,et al.  Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean , 2014, Proceedings of the National Academy of Sciences.

[2]  Stefan Schouten,et al.  Different seasonality of pelagic and benthic Thaumarchaeota in the North Sea , 2013 .

[3]  M. Huber,et al.  Re-evaluating modern and Palaeogene GDGT distributions: Implications for SST reconstructions , 2013 .

[4]  A. Pearson,et al.  Assessing the Use of Archaeal Lipids as Marine Environmental Proxies , 2013 .

[5]  Stefan Schouten,et al.  The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review , 2013 .

[6]  Stefan Schouten,et al.  Distribution of glycerol dialkyl glycerol tetraether lipids in the water column of Lake Tanganyika , 2012 .

[7]  Stefan Schouten,et al.  Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone. Part II: Selective preservation and degradation in sediments and consequences for the TEX86 , 2012 .

[8]  T. Fukuhara,et al.  Glycerol dialkyl glycerol tetraethers and TEX86 index in sinking particles in the western North Pacific , 2012 .

[9]  Xiao-Lei Liu,et al.  Extending the known range of glycerol ether lipids in the environment: structural assignments based on tandem mass spectral fragmentation patterns. , 2012, Rapid communications in mass spectrometry : RCM.

[10]  M. Stieglmeier,et al.  Intact Polar and Core Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Group I.1a and I.1b Thaumarchaeota in Soil , 2012, Applied and Environmental Microbiology.

[11]  A. Rosell‐Melé,et al.  Co-variation of crenarchaeol and branched GDGTs in globally-distributed marine and freshwater sedimentary archives , 2012 .

[12]  M. Scranton,et al.  Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin , 2012 .

[13]  Stefan Schouten,et al.  Core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in Sand Pond, Warwick, Rhode Island (USA): Insights into the origin of lacustrine GDGTs , 2012 .

[14]  C. Huguet,et al.  Distribution of Intact and Core Membrane Lipids of Archaeal Glycerol Dialkyl Glycerol Tetraethers among Size-Fractionated Particulate Organic Matter in Hood Canal, Puget Sound , 2012, Applied and Environmental Microbiology.

[15]  Sitan Xie Organic-geochemical studies of microbial lipids and carbon flow in oxygen-deficient marine environments , 2012 .

[16]  Stefan Schouten,et al.  Crenarchaeol tracks winter blooms of ammonia‐oxidizing Thaumarchaeota in the coastal North Sea , 2011 .

[17]  R. Pancost,et al.  Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in sediments characterized by diffusive methane flux , 2011 .

[18]  H. A. Levipan,et al.  Fingerprinting analysis of the prokaryote community along a marine–freshwater transect in central-southern Chile , 2011, Annals of Microbiology.

[19]  Jianfang Hu,et al.  Branched glycerol dialkyl glycerol tetraethers and paleoenvironmental reconstruction in Zoigê peat sediments during the last 150 years , 2011 .

[20]  Xiao-Lei Liu,et al.  Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates , 2011 .

[21]  Xiao-Lei Liu,et al.  Distribution of intact and core GDGTs in marine sediments , 2011 .

[22]  E. Hopmans,et al.  13,16-Dimethyl Octacosanedioic Acid (iso-Diabolic Acid), a Common Membrane-Spanning Lipid of Acidobacteria Subdivisions 1 and 3 , 2011, Applied and Environmental Microbiology.

[23]  Annika C. Mosier,et al.  Core and Intact Polar Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Ammonia-Oxidizing Archaea Enriched from Marine and Estuarine Sediments , 2011, Applied and Environmental Microbiology.

[24]  O. Ulloa,et al.  High diversity of ammonia-oxidizing archaea in permanent and seasonal oxygen-deficient waters of the eastern South Pacific. , 2010, Environmental microbiology.

[25]  J. Russell,et al.  Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments , 2010 .

[26]  Stefan Schouten,et al.  New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions , 2010 .

[27]  C. Schubert,et al.  Distribution of branched and isoprenoid tetraether lipids in an oligotrophic and a eutrophic Swiss lake: Insights into sources and GDGT-based proxies , 2010 .

[28]  A. Santoro,et al.  Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. , 2010, Environmental microbiology.

[29]  S. Derenne,et al.  Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat bog , 2010 .

[30]  Stefan Schouten,et al.  Applicability and calibration of the TEX86 paleothermometer in lakes. , 2010 .

[31]  D. Stahl,et al.  Comparison of extraction methods for quantitative analysis of core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in environmental samples , 2010 .

[32]  M. Wagner,et al.  Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon , 2010, The ISME Journal.

[33]  E. Boyd,et al.  Temperature and pH controls on glycerol dibiphytanyl glycerol tetraether lipid composition in the hyperthermophilic crenarchaeon Acidilobus sulfurireducens , 2010, Extremophiles.

[34]  H. Harvey,et al.  The sequestration of terrestrial organic carbon in Arctic Ocean sediments: A comparison of methods and implications for regional carbon budgets , 2009 .

[35]  J. Russell,et al.  Distributions of branched GDGTs in a tropical lake system: Implications for lacustrine application of the MBT/CBT paleoproxy. , 2009 .

[36]  H. Urrutia,et al.  Spatial and temporal variability of planktonic archaeal abundance in the Humboldt Current System off Chile , 2009 .

[37]  D. Kristensen,et al.  Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). , 2009 .

[38]  J. S. Sinninghe Damsté,et al.  Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect , 2009 .

[39]  F. Bourrin,et al.  Transport and depositional process of soil organic matter during wet and dry storms on the Têt inner shelf (NW Mediterranean) , 2009 .

[40]  L. Lemiègre,et al.  Archaeal Lipids: Innovative Materials for Biotechnological Applications , 2008 .

[41]  P. Forterre,et al.  Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota , 2008, Nature Reviews Microbiology.

[42]  M. Könneke,et al.  Cultivation of a Thermophilic Ammonia Oxidizing Archaeon Synthesizing Crenarchaeol , 2022 .

[43]  M. Könneke,et al.  Intact Membrane Lipids of “Candidatus Nitrosopumilus maritimus,” a Cultivated Representative of the Cosmopolitan Mesophilic Group I Crenarchaeota , 2008, Applied and Environmental Microbiology.

[44]  Stefan Schouten,et al.  Global sediment core-top calibration of the TEX86 paleothermometer in the ocean , 2008 .

[45]  Stefan Schouten,et al.  Variations in spatial and temporal distribution of Archaea in the North Sea in relation to environmental variables. , 2007, FEMS microbiology ecology.

[46]  R. Amann,et al.  Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study , 2007 .

[47]  H. Urrutia,et al.  A time series of prokaryote secondary production in the oxygen minimum zone of the Humboldt current system, off central Chile , 2007 .

[48]  José Garcés-Vargas,et al.  Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile , 2007 .

[49]  E. Menschel,et al.  Productivity cycles in the coastal upwelling area off Concepción: The importance of diatoms and bacterioplankton in the organic carbon flux , 2007 .

[50]  A. Schimmelmann,et al.  A study of the TEX86 paleothermometer in the water column and sediments of the Santa Barbara Basin, California , 2007 .

[51]  D. M. Ward,et al.  Archaeal and Bacterial Glycerol Dialkyl Glycerol Tetraether Lipids in Hot Springs of Yellowstone National Park , 2007, Applied and Environmental Microbiology.

[52]  A. D. Jones,et al.  Lipids of marine Archaea: Patterns and provenance in the water-column and sediments , 2007 .

[53]  David L. Valentine,et al.  Opinion: Adaptations to energy stress dictate the ecology and evolution of the Archaea , 2007, Nature Reviews Microbiology.

[54]  Stefan Schouten,et al.  Environmental controls on bacterial tetraether membrane lipid distribution in soils , 2007 .

[55]  H. Urrutia,et al.  Methylotrophic Methanogens in the Water Column of an Upwelling Zone with a Strong Oxygen Gradient Off Central Chile , 2007 .

[56]  Stefan Schouten,et al.  Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea: Implications for TEX86 paleothermometry , 2006 .

[57]  Stefan Schouten,et al.  Characterization of transport and deposition of terrestrial organic matter in the southern North Sea using the BIT index , 2006 .

[58]  L. Aluwihare,et al.  Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Stefan Schouten,et al.  Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. , 2006, Environmental microbiology.

[60]  E. Delong,et al.  Pathways of Carbon Assimilation and Ammonia Oxidation Suggested by Environmental Genomic Analyses of Marine Crenarchaeota , 2006, PLoS biology.

[61]  C. Wuchter Ecology and membrane lipid distribution of marine Crenarchaeota: Implications for TEX86 paleothermometry , 2006 .

[62]  J. Beman,et al.  Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Stefan Schouten,et al.  Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: Implications for TEX86 paleothermometry , 2005 .

[64]  T. Reinthaler,et al.  Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean , 2005, Applied and Environmental Microbiology.

[65]  H. Morii,et al.  Recent Advances in Structural Research on Ether Lipids from Archaea Including Comparative and Physiological Aspects , 2005, Bioscience, biotechnology, and biochemistry.

[66]  Stefan Schouten,et al.  Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry , 2004 .

[67]  F. Rodríguez-Valera,et al.  Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes. , 2004, Environmental microbiology.

[68]  John J. Helly,et al.  Global distribution of naturally occurring marine hypoxia on continental margins , 2004 .

[69]  Stefan Schouten,et al.  A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids , 2004 .

[70]  R. Seifert,et al.  Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  David J. Baumler,et al.  Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid , 2004, Extremophiles.

[72]  Stefan Schouten,et al.  Archaeal lipids and anaerobic oxidation of methane in euxinic water columns: a comparative study of the Black Sea and Cariaco Basin , 2004 .

[73]  J. Hollibaugh,et al.  Phylogenetic Composition of Arctic Ocean Archaeal Assemblages and Comparison with Antarctic Assemblages , 2004, Applied and Environmental Microbiology.

[74]  H. González,et al.  Decomposition of sinking proteinaceous material during fall in the oxygen minimum zone off northern Chile , 2004 .

[75]  David C. Smith,et al.  Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). , 2003, FEMS microbiology ecology.

[76]  E. Delong Oceans of Archaea , 2003 .

[77]  Stefan Schouten,et al.  Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? , 2002 .

[78]  A. V. van Duin,et al.  Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. , 2002, Journal of lipid research.

[79]  Stefan Schouten,et al.  Distribution of Membrane Lipids of Planktonic Crenarchaeota in the Arabian Sea , 2002, Applied and Environmental Microbiology.

[80]  E. Delong,et al.  Comparison of Fluorescently Labeled Oligonucleotide and Polynucleotide Probes for the Detection of Pelagic Marine Bacteria and Archaea , 2002, Applied and Environmental Microbiology.

[81]  T. Oshima,et al.  Complete Polar Lipid Composition of Thermoplasma acidophilum HO-62 Determined by High-Performance Liquid Chromatography with Evaporative Light-Scattering Detection , 2002, Journal of bacteriology.

[82]  Mark L. Zeidel,et al.  Molecular Mechanisms of Water and Solute Transport across Archaebacterial Lipid Membranes* , 2001, The Journal of Biological Chemistry.

[83]  Stefan Schouten,et al.  Massive Expansion of Marine Archaea During a Mid-Cretaceous Oceanic Anoxic Event , 2001, Science.

[84]  F. Rodríguez-Valera,et al.  A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. , 2001, Environmental microbiology.

[85]  E. Delong,et al.  Archaeal dominance in the mesopelagic zone of the Pacific Ocean , 2001, Nature.

[86]  Y. Itoh,et al.  Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature , 2001, Lipids.

[87]  Stefan Schouten,et al.  Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Stefan Schouten,et al.  Newly Discovered Non‐isoprenoid Glycerol Dialkyl Glycerol Tetraether Lipids in Sediments , 2000 .

[89]  J. Fuhrman,et al.  Marine Planktonic Archaea Take Up Amino Acids , 2000, Applied and Environmental Microbiology.

[90]  Stefan Schouten,et al.  Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. , 2000, Rapid communications in mass spectrometry : RCM.

[91]  Stefan Schouten,et al.  Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments , 2000 .

[92]  E. Delong,et al.  A time series assessment of planktonic archaeal variability in the Santa Barbara Channel , 1999 .

[93]  A. Driessen,et al.  The essence of being extremophilic: the role of the unique archaeal membrane lipids , 1998, Extremophiles.

[94]  Rebekka R. E. Artz,et al.  University of Groningen Association of marine archaea with the digestive tracts of two marine fish species , 2017 .

[95]  E. Delong,et al.  Seasonal and Spatial Variability of Bacterial and Archaeal Assemblages in the Coastal Waters near Anvers Island, Antarctica , 1998, Applied and Environmental Microbiology.

[96]  S. Wakeham,et al.  Archaea in Black Sea water column particulate matter and sediments—evidence from ether lipid derivatives , 1998 .

[97]  E. Delong,et al.  Dibiphytanyl Ether Lipids in Nonthermophilic Crenarchaeotes , 1998, Applied and Environmental Microbiology.

[98]  Stefan Schouten,et al.  Ether lipids of planktonic archaea in the marine water column , 1997, Applied and environmental microbiology.

[99]  J. Brisson,et al.  Identification of β-l-gulose as the sugar moiety of the main polar lipid of Thermoplasma acidophilum , 1997 .

[100]  E. Delong,et al.  Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel , 1997, Applied and environmental microbiology.

[101]  J. Brisson,et al.  Identification of beta-L-gulose as the sugar moiety of the main polar lipid Thermoplasma acidophilum. , 1997, Biochimica et biophysica acta.

[102]  E. Laws,et al.  Growth rates and production of heterotrophic bacteria and phytoplankton in the North Pacific subtropical gyre , 1996 .

[103]  M. Rosa Archaeal lipids: structural features and supramolecular organization , 1996 .

[104]  C. Schleper,et al.  Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0 , 1995, Journal of bacteriology.

[105]  E. Delong,et al.  High abundance of Archaea in Antarctic marine picoplankton , 1994, Nature.

[106]  R. Amann,et al.  Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes , 1994, Applied and environmental microbiology.

[107]  D. Stahl,et al.  Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens , 1994, Applied and environmental microbiology.

[108]  E. Delong Archaea in coastal marine environments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[109]  A. Davis Novel major archaebacterial group from marine plankton , 1992, Nature.

[110]  M. Kates Archaebacterial lipids: structure, biosynthesis and function. , 1992, Biochemical Society symposium.

[111]  David A. Stahl,et al.  Development and application of nucleic acid probes , 1991 .

[112]  林继红,et al.  古细菌(Archaebacteria)表面糖蛋白 , 1990 .

[113]  D. Kamykowski,et al.  Hypoxia in the world ocean as recorded in the historical data set , 1990 .

[114]  R. Amann,et al.  Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations , 1990, Applied and environmental microbiology.

[115]  J. Bonilla,et al.  Algunas caracteristicas hidrograficas en la region circunvecina a la isla de margarita , venezuela , 1990 .

[116]  H. Morii,et al.  Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum. , 1987, Journal of biochemistry.

[117]  A. Gliozzi,et al.  Structure, Biosynthesis, and Physicochemical Properties of Archaebacterial Lipids , 1986, Microbiological reviews.

[118]  D. M. Ward,et al.  Archaebacterial lipids in hot-spring microbial mats , 1985, Nature.

[119]  A. Gliozzi,et al.  Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria , 1983 .

[120]  J. Zeikus,et al.  Iso- and Anteiso-Branched Glycerol Diethers of the Thermophilic Anaerobe Thermodesulfotobacterium commune. , 1983, Systematic and applied microbiology.

[121]  Ramón Ahumada Bermúdez,et al.  ALGUNAS CARACTERISTICAS HIDROGRAFICAS DE LA BAHIA DE CONCEPCION (36°40’S; 73°02’W) Y AREAS ADYACENTES. CHILE , 1979, Gayana Miscelanea.

[122]  W. Mayberry,et al.  Lipids of Thermoplasma acidophilum , 1972, Journal of bacteriology.

[123]  W. Summers A simple method for extraction of RNA from E. coli utilizing diethyl pyrocarbonate. , 1970, Analytical biochemistry.