Markov Processes Related with Dunkl Operators

Dunkl operators are parameterized differential-difference operators on RNthat are related to finite reflection groups. They can be regarded as a generalization of partial derivatives and play a major role in the study of Calogero?Moser?Sutherland-type quantum many-body systems. Dunkl operators lead to generalizations of various analytic structures, like the Laplace operator, the Fourier transform, Hermite polynomials, and the heat semigroup. In this paper we investigate some probabilistic aspects of this theory in a systematic way. For this, we introduce a concept of homogeneity of Markov processes on RNthat generalizes the classical notion of processes with independent, stationary increments to the Dunkl setting. This includes analogues of Brownian motion and Cauchy processes. The generalizations of Brownian motion have the cadlag property and form, after symmetrization with respect to the underlying reflection groups, diffusions on the Weyl chambers. A major part of the paper is devoted to the concept of modified moments of probability measures on RNin the Dunkl setting. This leads to several results for homogeneous Markov processes (in our extended setting), including martingale characterizations and limit theorems. Furthermore, relations to generalized Hermite polynomials, Appell systems, and Ornstein?Uhlenbeck processes are discussed.

[1]  René Schott,et al.  Algebraic Structures and Operator Calculus , 1993 .

[2]  W. Stout Almost sure convergence , 1974 .

[3]  G. Heckman An elementary approach to the hypergeometric shift operators of Opdam , 1991 .

[4]  Petar Todorovic,et al.  Markov Processes I , 1992 .

[5]  Shuji Watanabe Sobolev type theorems for an operator with singularity , 1997 .

[6]  M. Lassalle,et al.  Polynômes de Hermite généralisés , 1991 .

[7]  M. Rosenblum,et al.  Generalized Hermite Polynomials and the Bose-Like Oscillator Calculus , 1993, math/9307224.

[8]  S. Albeverio,et al.  Non-Gaussian Infinite Dimensional Analysis , 1996 .

[9]  E. Opdam Harmonic analysis for certain representations of graded Hecke algebras , 1995 .

[10]  Charles F. Dunkl,et al.  Hankel transforms associated to finite reflection groups , 1992 .

[11]  H. Zeuner Moment functions and laws of large numbers on hypergroups , 1992 .

[12]  T. H. Baker,et al.  Nonsymmetric Jack polynomials and integral kernels , 1996 .

[13]  L. Yang A Note on the Quantum Rule of the Harmonic Oscillator , 1951 .

[14]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[15]  Polychronakos Exchange operator formalism for integrable systems of particles. , 1992, Physical review letters.

[16]  A Lévy-type characterization of one-dimensional diffusions , 1998 .

[17]  Yu. A. Molchanov,et al.  Fundamental solutions for partial differential equations with reflection group invariance , 1995 .

[18]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[19]  Confluent Hypergeometric Orthogonal Polynomials Related to the Rational Quantum Calogero System with Harmonic Confinement , 1996, q-alg/9609032.

[20]  M. Rösler Generalized Hermite Polynomials and the Heat Equation for Dunkl Operators , 1998 .

[21]  Yuan Xu,et al.  Integration of the intertwining operator for $h$-harmonic polynomials associated to reflection groups , 1997 .

[22]  Michael Voit,et al.  AN UNCERTAINTY PRINCIPLE FOR HANKEL TRANSFORMS , 1999 .

[23]  B. Sutherland Quantum many body problem in one-dimension: Ground state , 1971 .

[24]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[25]  E. Opdam Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group , 1993 .

[26]  Biorthogonal polynomials associated with reflection groups and a formula of Macdonald , 1997, q-alg/9711004.

[27]  Bill Sutherland,et al.  Quantum Many‐Body Problem in One Dimension: Thermodynamics , 1971 .

[28]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[29]  Luc Lapointe,et al.  Exact operator solution of the Calogero-Sutherland model , 1995, q-alg/9509003.

[30]  Homogeneous Markov Processes and Gaussian Processes on Hyper- Groups , 1997 .

[31]  S. Kamefuchi,et al.  Quantum field theory and parastatistics , 1982 .

[32]  Steven Roman The Umbral Calculus , 1984 .

[33]  I. Cherednik A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras , 1991 .

[34]  R. Schott,et al.  Algebraic Structures and Operators Calculus: Volume III: Representations of Lie Groups , 1995 .

[35]  I. G. MacDonald The volume of a compact Lie group , 1980 .

[36]  M. Rösler POSITIVITY OF DUNKL'S INTERTWINING OPERATOR , 1997 .

[37]  Charles F. Dunkl,et al.  Differential-difference operators associated to reflection groups , 1989 .

[38]  Alexander Kirillov,et al.  Lectures on affine Hecke algebras and Macdonald’s conjectures , 1997 .

[39]  H. Heyer,et al.  Harmonic Analysis of Probability Measures on Hypergroups , 1994 .

[40]  R. Schott,et al.  Representations of Lie groups , 1996 .

[41]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[42]  Francesco Calogero,et al.  Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials , 1971 .

[43]  Christian Berg,et al.  Potential Theory on Locally Compact Abelian Groups , 1975 .

[44]  Intertwining operators and polynomials associated with the symmetric group , 1998 .

[45]  J. Humphreys Reflection groups and coxeter groups , 1990 .

[46]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[47]  The Calogero-Sutherland model and polynomials with prescribed symmetry , 1996, solv-int/9609010.

[48]  Charles F. Dunkl,et al.  Integral Kernels with Reflection Group Invariance , 1991, Canadian Journal of Mathematics.

[49]  M.F.E. de Jeu,et al.  The dunkl transform , 1993 .

[50]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .