GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling

The GaAs nonlinear transmission line (NLTL) is a monolithic millimeter-wave integrated circuit consisting of a high-impedance transmission line loaded by reverse-biased Schottky contacts. The engineering of functional monolithic NLTLs is considered. Through generation of shock waves on the NLTL, the authors have generated electrical step functions with approximately 5 V magnitude and less than 1.4 ps fall time. Diode sampling bridges strobed by NLTL shock-wave generators have attained bandwidths approaching 300 GHz and have applications in instruments for millimeter-wave waveform and network measurements. The authors discuss the circuit design and diode design requirements for picosecond NLTL shock-wave generators and NLTL-driven sampling circuits. >

[1]  Mark J. W. Rodwell,et al.  130 GHz GaAs monolithic integrated circuit sampling head , 1989 .

[2]  R. H. Freeman,et al.  An investigation of nonlinear transmission lines and shock waves , 1977 .

[3]  M. Kamegawa,et al.  Impulse compression using soliton effects in a monolithic GaAs circuit , 1991 .

[4]  R. J. Mattauch,et al.  Hyperabrupt Junction Varactor Diodes for Millimeter-Wavelength Harmonic Generators , 1983 .

[5]  Mark J. W. Rodwell,et al.  Generation of 7.8 ps electrical transients on a monolithic nonlinear transmission line , 1988 .

[6]  A. Scott,et al.  The soliton: A new concept in applied science , 1973 .

[7]  Rolf Landauer,et al.  Shock Waves in Nonlinear Transmission Lines and Their Effect on Parametric Amplification , 1960, IBM J. Res. Dev..

[8]  D. C. D'Avanzo Proton Isolation for GaAs Integrated Circuits , 1982 .

[9]  R. Hirota,et al.  Theoretical and experimental studies of lattice solitons in nonlinear lumped networks , 1973 .

[10]  Mark J. W. Rodwell,et al.  Hyperabrupt‐doped GaAs nonlinear transmission line for picosecond shock‐wave generation , 1989 .

[11]  R.A. Marsland,et al.  Monolithic integrated circuits for mm-wave instrumentation , 1990, 12th Annual Symposium on Gallium Arsenide Integrated Circuit (GaAs IC).

[12]  Mrt Tan,et al.  7* electrical pulse compression on an inhomogeneous nonlinear transmission line , 1988 .

[13]  Rolf Landauer,et al.  Velocity modulation of propagating waves , 1963 .

[14]  M. Glenn,et al.  100 GHz high-gain InP MMIC cascode amplifier , 1990, 12th Annual Symposium on Gallium Arsenide Integrated Circuit (GaAs IC).

[15]  J. Moll,et al.  Physical modeling of the step recovery diode for pulse and harmonic generation circuits , 1969 .

[16]  R. D. Hall,et al.  Broad-band thin-film signal sampler , 1972 .

[17]  M. Rodwell,et al.  Generation of 3.5-ps fall-time shock waves on a monolithic GaAs nonlinear transmission line , 1988, IEEE Electron Device Letters.

[18]  Mark J. W. Rodwell,et al.  Nonlinear transmission line for picosecond pulse compression and broadband phase modulation , 1987 .

[19]  W. M. Grove Sampling for Oscilloscopes and Other RF Systems: DC Through X-Band , 1966 .

[20]  Mark J. W. Rodwell,et al.  275 GHz 3-mask integrated GaAs sampling circuit , 1990 .

[21]  Alwyn C. Scott,et al.  Active and nonlinear wave propagation in electronics , 1970 .

[22]  Rolf Landauer,et al.  Phase transition waves: Solitons versus shock waves , 1980 .

[23]  Rolf Landauer,et al.  Parametric Amplification along Nonlinear Transmission Lines , 1960 .

[24]  Rolf Landauer,et al.  Effects of dispersion on steady state electromagnetic shock profiles , 1973 .