Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method
暂无分享,去创建一个
[1] L. Sirovich. Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .
[2] M. P. Païdoussis,et al. NON-LINEAR DYNAMICS AND STABILITY OF CIRCULAR CYLINDRICAL SHELLS CONTAINING FLOWING FLUID, PART II: LARGE-AMPLITUDE VIBRATIONS WITHOUT FLOW , 1999 .
[3] Marco Amabili,et al. A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach , 2003 .
[4] M. P. Païdoussis,et al. NON-LINEAR DYNAMICS AND STABILITY OF CIRCULAR CYLINDRICAL SHELLS CONTAINING FLOWING FLUID. PART I: STABILITY , 1999 .
[5] Michael P. Païdoussis,et al. A cantilever conveying fluid: coherent modes versus beam modes , 2004 .
[6] Gaëtan Kerschen,et al. On the exploitation of chaos to build reduced-order models , 2003 .
[7] S. Zahorian. Principal‐Components Analysis for Low Redundancy Encoding of Speech Spectra , 1979 .
[8] D. A. Evensen,et al. Nonlinear flexural vibrations of thin-walled circular cylinders , 1967 .
[9] Marco Amabili,et al. Non-linear vibrations of doubly curved shallow shells , 2005 .
[10] J. Cusumano,et al. Period-infinity periodic motions, chaos, and spatial coherence in a 10 degree of freedom impact oscillator , 1993 .
[11] Lawrence Sirovich,et al. The use of the Karhunen-Loegve procedure for the calculation of linear Eigenfunctions , 1991 .
[12] A. Vakakis,et al. PROPER ORTHOGONAL DECOMPOSITION (POD) OF A CLASS OF VIBROIMPACT OSCILLATIONS , 2001 .
[13] M. Païdoussis,et al. Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction , 2003 .
[14] Michael P. Païdoussis,et al. A horizontal fluid-conveying cantilever: spatial coherent structures, beam modes and jumps in stability diagram , 2005 .
[15] M. P. Païdoussis,et al. A compact limit-cycle oscillation model of a cantilever conveying fluid , 2003 .
[16] J. Cusumano,et al. Bifurcation and Modal Interaction in a Simplified Model of Bending-Torsion Vibrations of the Thin Elastica , 1995 .
[17] Stephen Wolfram,et al. The Mathematica Book , 1996 .
[18] Marco Amabili,et al. Theory and experiments for large-amplitude vibrations of empty and fluid-filled circular cylindrical shells with imperfections , 2003 .
[19] F. Busse. An exploration of chaos: J. Argyris, G. Faust and M. Haase, Elsevier, Amsterdam, 1994, 722 pp., ISBN 0-444-82002-7 (hardbound), 0-444-82003-5 (paperback) , 1994 .
[20] Earl H. Dowell,et al. Modal equations for the nonlinear flexural vibrations of a cylindrical shell , 1968 .
[21] Nadine Aubry,et al. The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.
[22] M. P. Païdoussis,et al. Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method , 2003 .
[23] M. P. Païdoussis,et al. NON-LINEAR DYNAMICS AND STABILITY OF CIRCULAR CYLINDRICAL SHELLS CONTAINING FLOWING FLUID. PART III: TRUNCATION EFFECT WITHOUT FLOW AND EXPERIMENTS , 2000 .