Robust Topological Inference: Distance To a Measure and Kernel Distance
暂无分享,去创建一个
Frédéric Chazal | Larry A. Wasserman | Alessandro Rinaldo | Brittany Terese Fasy | Fabrizio Lecci | Bertrand Michel | A. Rinaldo | L. Wasserman | F. Chazal | F. Lecci | B. Michel
[1] Bernhard Schölkopf,et al. Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions , 2009, NIPS.
[2] Gunnar E. Carlsson,et al. Topology and data , 2009 .
[3] Jon A. Wellner,et al. Empirical Processes with Applications to Statistics. , 1988 .
[4] V. Icke,et al. The Galaxy Distribution as a Voronoi Foam , 1994 .
[5] Jesse Freeman,et al. in Morse theory, , 1999 .
[6] J. Yukich. Laws of large numbers for classes of functions , 1985 .
[7] Eugene F. Schuster,et al. Incorporating support constraints into nonparametric estimators of densities , 1985 .
[8] Frédéric Chazal,et al. Rates of convergence for robust geometric inference , 2015, ArXiv.
[9] Frédéric Chazal,et al. Deconvolution for the Wasserstein Metric and Geometric Inference , 2011, GSI.
[10] Steve Oudot,et al. The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.
[11] Deniz Erdogmus,et al. Locally Defined Principal Curves and Surfaces , 2011, J. Mach. Learn. Res..
[12] Leonidas J. Guibas,et al. Proximity of persistence modules and their diagrams , 2009, SCG '09.
[13] A. Cuevas,et al. On boundary estimation , 2004, Advances in Applied Probability.
[14] Carsten Griwodz,et al. Soccer video and player position dataset , 2014, MMSys '14.
[15] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[16] Sivaraman Balakrishnan,et al. Confidence sets for persistence diagrams , 2013, The Annals of Statistics.
[17] S. Mukherjee,et al. Topological Consistency via Kernel Estimation , 2014, 1407.5272.
[18] Leonidas J. Guibas,et al. Witnessed k-Distance , 2013, Discret. Comput. Geom..
[19] F. Chazal,et al. Deconvolution for the Wasserstein Metric and Geometric Inference , 2011 .
[20] J. Wellner,et al. Empirical Processes with Applications to Statistics , 2009 .
[21] V. Bentkus. On the dependence of the Berry–Esseen bound on dimension , 2003 .
[22] Brittany Terese Fasy,et al. Introduction to the R package TDA , 2014, ArXiv.
[23] Peter Bubenik,et al. Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..
[24] Leonidas J. Guibas,et al. Witnessed k-Distance , 2011, Discrete & Computational Geometry.
[25] Bei Wang,et al. Geometric Inference on Kernel Density Estimates , 2013, SoCG.
[26] David Cohen-Steiner,et al. Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..
[27] S. Bobkov,et al. One-dimensional empirical measures, order statistics, and Kantorovich transport distances , 2019, Memoirs of the American Mathematical Society.
[28] Herbert Edelsbrunner,et al. Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web , 2013, Trans. Comput. Sci..
[29] Frédéric Chazal,et al. Geometric Inference for Probability Measures , 2011, Found. Comput. Math..
[30] A. Banyaga,et al. Lectures on Morse Homology , 2005 .
[31] Prakasa Rao. Nonparametric functional estimation , 1983 .
[32] L. Devroye,et al. A weighted k-nearest neighbor density estimate for geometric inference , 2011 .
[33] E. Giné,et al. Rates of strong uniform consistency for multivariate kernel density estimators , 2002 .
[34] Michel Demazure,et al. Bifurcations and Catastrophes: Geometry Of Solutions To Nonlinear Problems , 2000 .
[35] J. Cima,et al. On weak* convergence in ¹ , 1996 .
[36] M. Golubitsky,et al. Stable mappings and their singularities , 1973 .