De Bruijn Sequences—A Model Example of the Interaction of Discrete Mathematics and Computer Science

Combinatorics, graph theory, and abstract algebra can all be applied to the same algorithmic problem.

[1]  Emile Roth Permutations Arranged Around a Circle , 1971 .

[2]  Solomon W. Golomb,et al.  Shift Register Sequences , 1981 .

[3]  Anthony Ralston,et al.  Computer Science, Mathematics, and the Undergraduate Curricula in Both. , 1981 .

[4]  D. Rees Note on a Paper By I. J. Good , 1946 .

[5]  Mary Shaw,et al.  Curriculum '78—is computer science really that unmathematical? , 1980, CACM.

[6]  H. Fredricksen A Survey of Full Length Nonlinear Shift Register Cycle Algorithms , 1982 .

[7]  Harold Fredricksen,et al.  Necklaces of beads in k colors and k-ary de Bruijn sequences , 1978, Discret. Math..

[8]  A. Adrian Albert,et al.  Fundamental Concepts of Higher Algebra , 1958 .

[9]  I. Good Normal Recurring Decimals , 1946 .

[10]  Harold Fredricksen,et al.  A Class of Nonlinear de Bruijn Cycles , 1975, J. Comb. Theory, Ser. A.

[11]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[12]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[13]  M. Martin A problem in arrangements , 1934 .

[14]  Anthony Ralston A New Memoryless Algorithm for De Bruijn Sequences , 1981, J. Algorithms.

[15]  Morris Rubinoff,et al.  Shifting counters , 1958, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.

[16]  Jacobus Hendricus van Lint,et al.  Combinatorial theory seminar, Eindhoven University of Technology , 1974 .

[17]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[18]  Harold Fredricksen,et al.  Lexicographic Compositions and deBruijn Sequences , 1977, J. Comb. Theory, Ser. A.