De Bruijn Sequences—A Model Example of the Interaction of Discrete Mathematics and Computer Science
暂无分享,去创建一个
[1] Emile Roth. Permutations Arranged Around a Circle , 1971 .
[2] Solomon W. Golomb,et al. Shift Register Sequences , 1981 .
[3] Anthony Ralston,et al. Computer Science, Mathematics, and the Undergraduate Curricula in Both. , 1981 .
[4] D. Rees. Note on a Paper By I. J. Good , 1946 .
[5] Mary Shaw,et al. Curriculum '78—is computer science really that unmathematical? , 1980, CACM.
[6] H. Fredricksen. A Survey of Full Length Nonlinear Shift Register Cycle Algorithms , 1982 .
[7] Harold Fredricksen,et al. Necklaces of beads in k colors and k-ary de Bruijn sequences , 1978, Discret. Math..
[8] A. Adrian Albert,et al. Fundamental Concepts of Higher Algebra , 1958 .
[9] I. Good. Normal Recurring Decimals , 1946 .
[10] Harold Fredricksen,et al. A Class of Nonlinear de Bruijn Cycles , 1975, J. Comb. Theory, Ser. A.
[11] de Ng Dick Bruijn. A combinatorial problem , 1946 .
[12] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[13] M. Martin. A problem in arrangements , 1934 .
[14] Anthony Ralston. A New Memoryless Algorithm for De Bruijn Sequences , 1981, J. Algorithms.
[15] Morris Rubinoff,et al. Shifting counters , 1958, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.
[16] Jacobus Hendricus van Lint,et al. Combinatorial theory seminar, Eindhoven University of Technology , 1974 .
[17] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[18] Harold Fredricksen,et al. Lexicographic Compositions and deBruijn Sequences , 1977, J. Comb. Theory, Ser. A.