Message-passing neural quantum states for the homogeneous electron gas

We introduce a neural-network-based wave function Ansatz to accurately simulate extended, strongly interacting fermions in continuous space. The variational state is parameterized via permutation-equivariant message-passing neural networks to transform single-particle coordinates into highly correlated quasi-particle coordinates. We show the versatility and accuracy of this Ansatz by simulating the ground state of the homogeneous electron gas in three spatial dimensions at different densities and system sizes. Our model respects the fundamental symmetries of the Hamiltonian, such as continuous translation symmetries. We show better or comparable ground-state energies on small benchmark systems, compared to current state-of-the-art neural-network wave functions, using orders of magnitudes less variational parameters and optimization steps. These savings allow us to scale up to system sizes of $N=128$ electrons, previously inaccessible to neural-network wave functions in continuous space, opening the door for future work on finite-size extrapolations to the thermodynamic limit. We investigate the Ansatz's capability of identifying and representing different phases of matter without imposing any structural bias toward a given phase.

[1]  S. Vinko,et al.  Correlation energy of the paramagnetic electron gas at the thermodynamic limit , 2022, Physical Review B.

[2]  F. Noé,et al.  Electronic excited states in deep variational Monte Carlo , 2022, Nature Communications.

[3]  W. Foulkes,et al.  Discovering Quantum Phase Transitions with Fermionic Neural Networks , 2022, Physical review letters.

[4]  G. Carleo,et al.  Dilute neutron star matter from neural-network quantum states , 2022, 2212.04436.

[5]  Ingrid von Glehn,et al.  A Self-Attention Ansatz for Ab-initio Quantum Chemistry , 2022, ICLR.

[6]  Ji Chen,et al.  Ab initio calculation of real solids via neural network ansatz , 2022, Nature communications.

[7]  A. Bhowmik,et al.  Neural network ansatz for periodic wave functions and the homogeneous electron gas , 2022, Physical Review B.

[8]  S. Azadi,et al.  Low-density phase diagram of the three-dimensional electron gas , 2022, Physical Review B.

[9]  J. Stokes,et al.  Fermionic wave functions from neural-network constrained hidden states , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Jianfeng Lu,et al.  Neural-Network Quantum States for Periodic Systems in Continuous Space , 2021, 2112.11957.

[11]  F. Vicentini,et al.  mpi4jax: Zero-copy MPI communication of JAX arrays , 2021, J. Open Source Softw..

[12]  G. Carleo,et al.  Nuclei with Up to $$\varvec{A=6}$$ Nucleons with Artificial Neural Network Wave Functions , 2021, Few-Body Systems.

[13]  A. Alavi,et al.  Towards efficient and accurate ab initio solutions to periodic systems via transcorrelation and coupled cluster theory , 2021, Physical Review Research.

[14]  G. Carleo,et al.  Broken-Symmetry Ground States of the Heisenberg Model on the Pyrochlore Lattice , 2021, Physical Review X.

[15]  M. Schmitt,et al.  Learning the ground state of a non-stoquastic quantum Hamiltonian in a rugged neural network landscape , 2020, SciPost Physics.

[16]  G. Carleo,et al.  Variational Monte Carlo Calculations of A≤4 Nuclei with an Artificial Neural-Network Correlator Ansatz. , 2020, Physical review letters.

[17]  Y. Nomura,et al.  Dirac-Type Nodal Spin Liquid Revealed by Refined Quantum Many-Body Solver Using Neural-Network Wave Function, Correlation Ratio, and Level Spectroscopy , 2020, Physical Review X.

[18]  R. Melko,et al.  Recurrent neural network wave functions , 2020, Physical Review Research.

[19]  S. Gandolfi,et al.  Atomic Nuclei From Quantum Monte Carlo Calculations With Chiral EFT Interactions , 2020, Frontiers in Physics.

[20]  J. Carrasquilla Machine learning for quantum matter , 2020, 2003.11040.

[21]  G. Carleo,et al.  Fermionic neural-network states for ab-initio electronic structure , 2019, Nature Communications.

[22]  F. Noé,et al.  Deep-neural-network solution of the electronic Schrödinger equation , 2019, Nature Chemistry.

[23]  David Pfau,et al.  Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks , 2019, Physical Review Research.

[24]  J. Carrasquilla,et al.  Neural Gutzwiller-projected variational wave functions , 2019, Physical Review B.

[25]  Guglielmo Mazzola,et al.  NetKet: A machine learning toolkit for many-body quantum systems , 2019, SoftwareX.

[26]  Bryan K. Clark,et al.  Backflow Transformations via Neural Networks for Quantum Many-Body Wave Functions. , 2018, Physical review letters.

[27]  Amnon Shashua,et al.  Quantum Entanglement in Deep Learning Architectures. , 2018, Physical review letters.

[28]  G. Carleo,et al.  Symmetries and Many-Body Excitations with Neural-Network Quantum States. , 2018, Physical review letters.

[29]  Markus Holzmann,et al.  Nonlinear Network Description for Many-Body Quantum Systems in Continuous Space. , 2017, Physical review letters.

[30]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[31]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[32]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[33]  G. Conduit,et al.  Jastrow correlation factor for periodic systems , 2016, 1607.05921.

[34]  Kevin Gimpel,et al.  Gaussian Error Linear Units (GELUs) , 2016 .

[35]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Janina Decker,et al.  Elementary Excitations In Solids , 2016 .

[37]  Markus Holzmann,et al.  Iterative backflow renormalization procedure for many-body ground-state wave functions of strongly interacting normal Fermi liquids , 2015, 1501.02199.

[38]  S. C. Pieper,et al.  Quantum Monte Carlo methods for nuclear physics , 2014, 1412.3081.

[39]  R. Needs,et al.  Diffusion quantum Monte Carlo calculation of the quasiparticle effective mass of the two-dimensional homogeneous electron gas , 2012, 1208.6317.

[40]  W. Lester,et al.  Quantum Monte Carlo and related approaches. , 2012, Chemical reviews.

[41]  Garnet Kin-Lic Chan,et al.  Optimizing large parameter sets in variational quantum Monte Carlo , 2011, 1108.0900.

[42]  H. Alloul Introduction to Superconductivity , 2011 .

[43]  C J Umrigar,et al.  Optimization of quantum Monte Carlo wave functions by energy minimization. , 2007, The Journal of chemical physics.

[44]  R J Needs,et al.  Inhomogeneous backflow transformations in quantum Monte Carlo calculations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  R. Needs,et al.  Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals , 2004, 0801.0377.

[46]  D. Ceperley,et al.  Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  S. Sorella GREEN FUNCTION MONTE CARLO WITH STOCHASTIC RECONFIGURATION , 1998, cond-mat/9803107.

[48]  R. Martin,et al.  Effects of backflow correlation in the three-dimensional electron gas: Quantum Monte Carlo study , 1998, cond-mat/9803092.

[49]  Steven C. Pieper,et al.  Quantum Monte Carlo calculations of nuclei with A 7 , 1997, nucl-th/9705009.

[50]  J. Board,et al.  Ewald summation techniques in perspective: a survey , 1996 .

[51]  A. Leggett,et al.  A theoretical description of the new phases of liquid He-3 , 1975 .

[52]  Richard Phillips Feynman,et al.  Energy Spectrum of the Excitations in Liquid Helium , 1956 .

[53]  J. Hubbard On the Interaction of Electrons in Metals , 1955 .

[54]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .