Exploring the Possibilities of Embedding Heterogeneous Data Attributes in Familiar Visualizations

Heterogeneous multi-dimensional data are now sufficiently common that they can be referred to as ubiquitous. The most frequent approach to visualizing these data has been to propose new visualizations for representing these data. These new solutions are often inventive but tend to be unfamiliar. We take a different approach. We explore the possibility of extending well-known and familiar visualizations through including Heterogeneous Embedded Data Attributes (HEDA) in order to make familiar visualizations more powerful. We demonstrate how HEDA is a generic, interactive visualization component that can extend common visualization techniques while respecting the structure of the familiar layout. HEDA is a tabular visualization building block that enables individuals to visually observe, explore, and query their familiar visualizations through manipulation of embedded multivariate data. We describe the design space of HEDA by exploring its application to familiar visualizations in the D3 gallery. We characterize these familiar visualizations by the extent to which HEDA can facilitate data queries based on attribute reordering.

[1]  M. Sheelagh T. Carpendale,et al.  Using Visualization to Explore Original and Anonymized LBSN Data , 2016, Comput. Graph. Forum.

[2]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[3]  Min Chen,et al.  Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications , 2013, Eurographics.

[4]  Jarke J. van Wijk,et al.  Flexible Linked Axes for Multivariate Data Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[5]  Matthew O. Ward,et al.  Mapping Nominal Values to Numbers for Effective Visualization , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[6]  Hong Zhou,et al.  Scattering Points in Parallel Coordinates , 2009, IEEE Transactions on Visualization and Computer Graphics.

[7]  Allan R. Wilks,et al.  Dynamic Graphics for Data Analysis , 1987 .

[8]  Hanspeter Pfister,et al.  UpSet: Visualization of Intersecting Sets , 2014, IEEE Transactions on Visualization and Computer Graphics.

[9]  Chun-Houh Chen,et al.  GAP: A graphical environment for matrix visualization and cluster analysis , 2010, Comput. Stat. Data Anal..

[10]  Hans-Peter Kriegel,et al.  'Circle Segments': A Technique for Visually Exploring Large Multidimensional Data Sets , 1996 .

[11]  Purvi Saraiya,et al.  Visualization of graphs with associated timeseries data , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[12]  Harri Siirtola,et al.  Interaction with the Reorderable Matrix , 1999, 1999 IEEE International Conference on Information Visualization (Cat. No. PR00210).

[13]  Thomas Berlage,et al.  FOCUS: the interactive table for product comparison and selection , 1996, UIST '96.

[14]  T. J. Watson,et al.  Ordering Categorical Data to Improve VisualizationSheng , 1999 .

[15]  Igor Jurisica,et al.  The FlowVizMenu and Parallel Scatterplot Matrix: Hybrid Multidimensional Visualizations for Network Exploration , 2010, IEEE Transactions on Visualization and Computer Graphics.

[16]  Ramana Rao,et al.  The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information , 1994, CHI '94.

[17]  Charles Perin,et al.  TimeSpan: Using Visualization to Explore Temporal Multi-dimensional Data of Stroke Patients , 2016, IEEE Transactions on Visualization and Computer Graphics.

[18]  Penny Rheingans,et al.  Visualizing Network Security Events Using Compound Glyphs from a Service-Oriented Perspective , 2007, VizSEC.

[19]  Michael J. McGuffin,et al.  TreeMatrix: A Hybrid Visualization of Compound Graphs , 2012, Comput. Graph. Forum.

[20]  J. Bertin La graphique et le traitement graphique de l'information , 1977 .

[21]  Jian Zhao,et al.  Interactive Exploration of Implicit and Explicit Relations in Faceted Datasets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[22]  Eser Kandogan,et al.  Visualizing multi-dimensional clusters, trends, and outliers using star coordinates , 2001, KDD '01.

[23]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[24]  Georges G. Grinstein,et al.  Iconographic Displays For Visualizing Multidimensional Data , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.

[25]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[26]  Bettina Speckmann,et al.  KelpFusion: A Hybrid Set Visualization Technique , 2013, IEEE Transactions on Visualization and Computer Graphics.

[27]  Romain Vuillemot,et al.  Using Concrete Scales: A Practical Framework for Effective Visual Depiction of Complex Measures , 2013, IEEE Transactions on Visualization and Computer Graphics.

[28]  Charles Perin,et al.  Revisiting Bertin Matrices: New Interactions for Crafting Tabular Visualizations , 2014, IEEE Transactions on Visualization and Computer Graphics.

[29]  Emmanuel Pietriga,et al.  OntoTrix: a hybrid visualization for populated ontologies , 2011, WWW.

[30]  Herman Chernoff,et al.  The Use of Faces to Represent Points in k- Dimensional Space Graphically , 1973 .

[31]  Felix Friedrich,et al.  A Tribute to J. Bertin's Graphical Data Analysis , 2014 .

[32]  Matthew O. Ward,et al.  Exploring N-dimensional databases , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[33]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[34]  Mary Czerwinski,et al.  Design Study of LineSets, a Novel Set Visualization Technique , 2011, IEEE Transactions on Visualization and Computer Graphics.

[35]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[36]  Pierre Dragicevic,et al.  GraphDice: A System for Exploring Multivariate Social Networks , 2010, Comput. Graph. Forum.

[37]  M. Sheelagh T. Carpendale,et al.  Papilio: Visualizing Android Application Permissions , 2014, Comput. Graph. Forum.

[38]  Mark H. Chignell,et al.  Elastic hierarchies: combining treemaps and node-link diagrams , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[39]  M. Sheelagh T. Carpendale,et al.  Bubble Sets: Revealing Set Relations with Isocontours over Existing Visualizations , 2009, IEEE Transactions on Visualization and Computer Graphics.

[40]  Hanspeter Pfister,et al.  Domino: Extracting, Comparing, and Manipulating Subsets Across Multiple Tabular Datasets , 2014, IEEE Transactions on Visualization and Computer Graphics.

[41]  Robert McGill,et al.  The Many Faces of a Scatterplot , 1984 .

[42]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[43]  J.C. Roberts,et al.  State of the Art: Coordinated & Multiple Views in Exploratory Visualization , 2007, Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007).

[44]  Charles Perin,et al.  SoccerStories: A Kick-off for Visual Soccer Analysis , 2013, IEEE Transactions on Visualization and Computer Graphics.

[45]  J. Thomson A tribute to J . , 2011 .

[46]  M. Sheelagh T. Carpendale,et al.  ArcTrees: Visualizing Relations in Hierarchical Data , 2005, EuroVis.

[47]  E. Lazega The Collegial Phenomenon , 2001 .

[48]  Jean-Daniel Fekete,et al.  Overlaying Graph Links on Treemaps , 2003 .

[49]  Jean-Daniel Fekete,et al.  Visual Sedimentation , 2013, IEEE Transactions on Visualization and Computer Graphics.

[50]  Klaus Mueller,et al.  Learning Visualizations by Analogy: Promoting Visual Literacy through Visualization Morphing , 2015, IEEE Transactions on Visualization and Computer Graphics.

[51]  Hans-Peter Kriegel,et al.  VisDB: database exploration using multidimensional visualization , 1994, IEEE Computer Graphics and Applications.

[52]  Jean-Daniel Fekete,et al.  MatLink: Enhanced Matrix Visualization for Analyzing Social Networks , 2007, INTERACT.

[53]  E. Lazega Introduction : Collegial Phenomenon : The Social Mechanisms of Cooperation Among Peers in a Corporate Law Partnership , 2001 .