PfSET10, a Plasmodium falciparum methyltransferase, maintains the active var gene in a poised state during parasite division.

[1]  E. Shimoni,et al.  3D nuclear architecture reveals coupled cell cycle dynamics of chromatin and nuclear pores in the malaria parasite Plasmodium falciparum , 2011, Cellular microbiology.

[2]  S. Ralph,et al.  Expression of P. falciparum var Genes Involves Exchange of the Histone Variant H2A.Z at the Promoter , 2011, PLoS pathogens.

[3]  Dave Richard,et al.  Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. , 2011, Cell host & microbe.

[4]  H. Stunnenberg,et al.  H2A.Z Demarcates Intergenic Regions of the Plasmodium falciparum Epigenome That Are Dynamically Marked by H3K9ac and H3K4me3 , 2010, PLoS pathogens.

[5]  Manoj T. Duraisingh,et al.  A Plant-Like Kinase in Plasmodium falciparum Regulates Parasite Egress from Erythrocytes , 2010, Science.

[6]  Jun Miao,et al.  Chromatin-Mediated Epigenetic Regulation in the Malaria Parasite Plasmodium falciparum , 2010, Eukaryotic Cell.

[7]  P. Percipalle,et al.  Nuclear functions of actin. , 2010, Cold Spring Harbor perspectives in biology.

[8]  Iris Müller,et al.  Methylation of H3K4 Is Required for Inheritance of Active Transcriptional States , 2010, Current Biology.

[9]  Blaise T. F. Alako,et al.  Plasmodium falciparum Heterochromatin Protein 1 Marks Genomic Loci Linked to Phenotypic Variation of Exported Virulence Factors , 2009, PLoS pathogens.

[10]  D. Wilinski,et al.  Clonally variant gene families in Plasmodium falciparum share a common activation factor , 2009, Molecular microbiology.

[11]  Celine Carret,et al.  Ectopic Recombination of a Malaria var Gene during Mitosis Associated with an Altered var Switch Rate , 2009, Journal of molecular biology.

[12]  Christopher J. Tonkin,et al.  Sir2 Paralogues Cooperate to Regulate Virulence Genes and Antigenic Variation in Plasmodium falciparum , 2009, PLoS biology.

[13]  P. Preiser,et al.  The Plasmodium falciparum STEVOR Multigene Family Mediates Antigenic Variation of the Infected Erythrocyte , 2009, PLoS pathogens.

[14]  Qi Fan,et al.  Histone lysine methyltransferases and demethylases in Plasmodium falciparum. , 2008, International journal for parasitology.

[15]  A. Craig,et al.  Exported Proteins Required for Virulence and Rigidity of Plasmodium falciparum-Infected Human Erythrocytes , 2008, Cell.

[16]  I. Fingerman,et al.  In vitro histone methyltransferase assay. , 2008, CSH protocols.

[17]  A. Gregory Matera,et al.  Actin-dependent intranuclear repositioning of an active gene locus in vivo , 2007, The Journal of cell biology.

[18]  D. Goldberg,et al.  An FKBP destabilization domain modulates protein levels in Plasmodium falciparum , 2007, Nature Methods.

[19]  Alisson M. Gontijo,et al.  5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites , 2007, Molecular microbiology.

[20]  Howard Y. Chang,et al.  A histone H3 lysine 27 demethylase regulates animal posterior development , 2007, Nature.

[21]  T. Wellems,et al.  Mechanisms underlying mutually exclusive expression of virulence genes by malaria parasites , 2007, EMBO reports.

[22]  C. Lavazec,et al.  Expression switching in the stevor and Pfmc‐2TM superfamilies in Plasmodium falciparum , 2007, Molecular microbiology.

[23]  Alain Verreault,et al.  Chromatin Challenges during DNA Replication and Repair , 2007, Cell.

[24]  C. Allis,et al.  Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. , 2007, Molecular cell.

[25]  Axel Imhof,et al.  PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. , 2006, Molecular cell.

[26]  Yali Dou,et al.  Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases , 2006, Proceedings of the National Academy of Sciences.

[27]  A. Cowman,et al.  Evidence that Plasmodium falciparum chromosome end clusters are cross‐linked by protein and are the sites of both virulence gene silencing and activation , 2006, Molecular microbiology.

[28]  J. Mellor It Takes a PHD to Read the Histone Code , 2006, Cell.

[29]  Anne E Carpenter,et al.  Long-Range Directional Movement of an Interphase Chromosome Site , 2006, Current Biology.

[30]  A. F. Stewart,et al.  Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development , 2006, Development.

[31]  M. Frank,et al.  Mutually Exclusive Expression of Virulence Genes by Malaria Parasites Is Regulated Independently of Antigen Production , 2006, PLoS pathogens.

[32]  A. Cowman,et al.  A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria , 2006, Nature.

[33]  Megan F. Cole,et al.  Genome-wide Map of Nucleosome Acetylation and Methylation in Yeast , 2005, Cell.

[34]  Xing Zhang,et al.  The SET-domain protein superfamily: protein lysine methyltransferases , 2005, Genome Biology.

[35]  S. Ralph,et al.  Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Manoj T. Duraisingh,et al.  Heterochromatin Silencing and Locus Repositioning Linked to Regulation of Virulence Genes in Plasmodium falciparum , 2005, Cell.

[37]  Alisson M. Gontijo,et al.  Telomeric Heterochromatin Propagation and Histone Acetylation Control Mutually Exclusive Expression of Antigenic Variation Genes in Malaria Parasites , 2005, Cell.

[38]  Eric S. Lander,et al.  Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse , 2005, Cell.

[39]  Cameron S. Osborne,et al.  Active genes dynamically colocalize to shared sites of ongoing transcription , 2004, Nature Genetics.

[40]  Paul S. Freemont,et al.  Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions , 2004, The Journal of cell biology.

[41]  Thomas Lavstsen,et al.  Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A‐adhering Plasmodium falciparum involved in pregnancy‐associated malaria , 2003, Molecular microbiology.

[42]  Kevin Struhl,et al.  Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. , 2003, Molecular cell.

[43]  James H. Hurley,et al.  Structure and Catalytic Mechanism of a SET Domain Protein Methyltransferase , 2002, Cell.

[44]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[45]  Stuart L. Schreiber,et al.  Active genes are tri-methylated at K4 of histone H3 , 2002, Nature.

[46]  Stuart L. Schreiber,et al.  Methylation of histone H3 Lys 4 in coding regions of active genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  P. Jenoe,et al.  Plasmodium falciparum Possesses a Cell Cycle-regulated Short Type Replication Protein A Large Subunit Encoded by an Unusual Transcript* , 2002, The Journal of Biological Chemistry.

[48]  Nevan J. Krogan,et al.  COMPASS, a Histone H3 (Lysine 4) Methyltransferase Required for Telomeric Silencing of Gene Expression* , 2002, The Journal of Biological Chemistry.

[49]  R. Kornberg,et al.  A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Rein Aasland,et al.  The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4 , 2001, The EMBO journal.

[51]  J. Davie,et al.  Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. , 2001, Genes & development.

[52]  Thomas E. Wellems,et al.  Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum , 2000, Nature.

[53]  M. Groudine,et al.  Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. , 2000, Genes & development.

[54]  S. Kyes,et al.  A simple RNA analysis method shows var and rif multigene family expression patterns in Plasmodium falciparum. , 2000, Molecular and biochemical parasitology.

[55]  S. Kyes,et al.  Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[56]  A. Fisher,et al.  Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. , 1999, Molecular cell.

[57]  Kevin Marsh,et al.  Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria , 1998, Nature Medicine.

[58]  Matthias Merkenschlager,et al.  Association of Transcriptionally Silent Genes with Ikaros Complexes at Centromeric Heterochromatin , 1997, Cell.

[59]  D. Fidock,et al.  Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Snow,et al.  PfEMP1, polymorphism and pathogenesis. , 1997, Annals of tropical medicine and parasitology.

[61]  A. Cowman,et al.  Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[62]  S. Korsmeyer,et al.  Altered Hox expression and segmental identity in Mll-mutant mice , 1995, Nature.

[63]  R. Coppel,et al.  Cytoadhesion and falciparum malaria: going with the flow. , 1995, Parasitology today.

[64]  Theodore F. Taraschi,et al.  Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes , 1995, Cell.

[65]  Joseph D. Smith,et al.  Switches in expression of plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes , 1995, Cell.

[66]  X. Su,et al.  The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of plasmodium falciparum-infected erythrocytes , 1995, Cell.

[67]  J C Reeder,et al.  Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum-infected erythrocytes , 1995, The Journal of experimental medicine.

[68]  D. Jackson,et al.  Visualization of focal sites of transcription within human nuclei. , 1993, The EMBO journal.

[69]  C. Benjamin,et al.  Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1 , 1992, The Journal of experimental medicine.

[70]  J. Barnwell Cytoadherence and sequestration in falciparum malaria. , 1989, Experimental parasitology.

[71]  C. Newbold,et al.  Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum , 1989, Nature.

[72]  M. Aikawa Human cerebral malaria. , 1988, The American journal of tropical medicine and hygiene.

[73]  R. Nagel,et al.  Membrane knobs are required for the microcirculatory obstruction induced by Plasmodium falciparum-infected erythrocytes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[74]  N. White,et al.  Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. , 1985, The American journal of pathology.

[75]  J. Barnwell,et al.  Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes , 1984, The Journal of experimental medicine.

[76]  T. Tsuboi,et al.  An efficient approach to the production of vaccines against the malaria parasite. , 2010, Methods in molecular biology.

[77]  Christopher J. Tonkin,et al.  Potential epigenetic regulatory proteins localise to distinct nuclear sub-compartments in Plasmodium falciparum. , 2010, International journal for parasitology.

[78]  G. Almouzni,et al.  Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. , 2009, Trends in cell biology.

[79]  P. Peterson,et al.  The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. , 2008, EMBO reports.

[80]  Tony Kouzarides,et al.  Histone H3 lysine 4 methylation patterns in higher eukaryotic genes , 2004, Nature Cell Biology.