Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow

The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.

[1]  Xiaojing Xu,et al.  On Convergence of Solutions of Fractal Burgers Equation toward Rarefaction Waves , 2008, SIAM J. Math. Anal..

[2]  Najeeb Alam Khan,et al.  Numerical solutions of time‐fractional Burgers equations: A comparison between generalized differential transformation technique and homotopy perturbation method , 2012 .

[3]  M. Czubak,et al.  Eventual regularization of the slightly supercritical fractional Burgers equation , 2009, 0911.5148.

[4]  Kazuhiko Kakuda,et al.  The generalized boundary element approach to Burgers' equation , 1990 .

[5]  Shaher Momani,et al.  Non-perturbative analytical solutions of the space- and time-fractional Burgers equations , 2006 .

[6]  O. Agrawal,et al.  Numerical solutions and analysis of diffusion for new generalized fractional Burgers equation , 2013 .

[7]  Syed Tauseef Mohyud-Din,et al.  Analytical Approach to Space- and Time-Fractional Burgers Equations , 2010 .

[8]  Saudi Arabia,et al.  APPROXIMATE SOLUTIONS FOR DIFFUSION EQUATIONS ON CANTOR SPACE-TIME , 2013 .

[9]  Nathael Alibaud,et al.  Asymptotic Properties of Entropy Solutions to Fractal Burgers Equation , 2009, SIAM J. Math. Anal..

[10]  Kiran M. Kolwankar,et al.  Hölder exponents of irregular signals and local fractional derivatives , 1997, chao-dyn/9711010.

[11]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[12]  Igor M. Sokolov,et al.  Physics of Fractal Operators , 2003 .

[13]  Hong-yan Liu,et al.  Fractional calculus for nanoscale flow and heat transfer , 2014 .

[14]  E. Aurell,et al.  On the decay of Burgers turbulence , 1997, Journal of Fluid Mechanics.

[15]  J. Burgers A mathematical model illustrating the theory of turbulence , 1948 .

[16]  Noncommutative Burgers equation , 2003, hep-th/0301213.

[17]  T. Musha,et al.  Traffic Current Fluctuation and the Burgers Equation , 1978 .

[18]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[19]  Abdon Atangana Convergence and stability analysis of a novel iteration method for fractional biological population equation , 2014, Neural Computing and Applications.

[20]  Dumitru Baleanu,et al.  Variational iteration method for the Burgers' flow with fractional derivatives—New Lagrange multipliers , 2013 .

[21]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[22]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[23]  Pietro Cornetti,et al.  The elastic problem for fractal media: basic theory and finite element formulation , 2004 .

[24]  Dumitru Baleanu,et al.  Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis , 2013 .

[25]  Yong Chen,et al.  Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives , 2008, Appl. Math. Comput..

[26]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[27]  Abdul-Majid Wazwaz,et al.  Multiple-front solutions for the Burgers equation and the coupled Burgers equations , 2007, Appl. Math. Comput..

[28]  David T. Blackstock,et al.  Generalized Burgers equation for plane waves , 1985 .

[29]  Nobumasa Sugimoto Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves , 1991, Journal of Fluid Mechanics.

[30]  Wenjie Gao,et al.  Existence of solutions for nonlocal p-Laplacian thermistor problems on time scales , 2013 .

[31]  S. Motamen,et al.  Nonlinear diffusion equation , 2002 .

[32]  Y. Xiaojun,et al.  Advanced Local Fractional Calculus and Its Applications , 2012 .

[33]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[34]  Yu Zhang,et al.  On a Local Fractional Wave Equation under Fixed Entropy Arising in Fractal Hydrodynamics , 2014, Entropy.

[35]  Dimitri D. Vvedensky,et al.  Fluctuations in the lattice gas for Burgers' equation , 2002 .

[36]  J. Avrin The generalized Burgers’ equation and the Navier-Stokes equation in ⁿ with singular initial data , 1987 .

[37]  E. Hopf,et al.  The Partial Differential Equation u_i + uu_x = μu_t , 1950 .

[38]  Pan Zheng,et al.  Blow-up and global existence for the non-local reaction diffusion problem with time dependent coefficient , 2013 .

[39]  A. Cook,et al.  A finite element approach to Burgers' equation , 1981 .

[40]  Xiao‐Jun Yang,et al.  Fractal Dynamical Model of Vehicular Traffic Flow within the Local Fractional Conservation Laws , 2014 .

[41]  N. Cancrini,et al.  The stochastic Burgers Equation , 1994 .

[42]  H. Srivastava,et al.  Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives , 2013 .

[43]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[44]  Varsha Daftardar-Gejji,et al.  On calculus of local fractional derivatives , 2002 .

[45]  W. Woyczynski,et al.  Fractal Burgers Equations , 1998 .