RE-EVALUATING WASP-12b: STRONG EMISSION AT 2.315 μm, DEEPER OCCULTATIONS, AND AN ISOTHERMAL ATMOSPHERE

We revisit the atmospheric properties of the extremely hot Jupiter WASP-12b in light of several new developments. First, we present new narrowband (2.315 μm) secondary eclipse photometry, which exhibits a planet/star flux ratio of 0.45% ± 0.06%, corresponding to a brightness temperature of 3640 ± 230 K; second, recent Spitzer/Infrared Array Camera and Hubble Space Telescope/Wide Field Camera 3 observations; and third, a recently observed star only 1'' from WASP-12, which has diluted previous observations and which we further characterize here. We correct past WASP-12b eclipse measurements for the presence of this object, and we revisit the interpretation of WASP-12b's dilution-corrected emission spectrum. The resulting planetary emission spectrum is well approximated by a blackbody, and consequently our primary conclusion is that the planet's infrared photosphere is nearly isothermal. Thus, secondary eclipse spectroscopy is relatively ill suited to constrain WASP-12b's atmospheric abundances, and transmission spectroscopy may be necessary to achieve this goal.

[1]  Emily Rauscher,et al.  CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT , 2011, 1109.2270.

[2]  J. Jenkins,et al.  Some Tests to Establish Confidence in Planets Discovered by Transit Photometry , 2002 .

[3]  L. Observatory,et al.  GROUND-BASED DETECTIONS OF THERMAL EMISSION FROM CoRoT-1b AND WASP-12b , 2011, 1109.5179.

[4]  W. C. Bowman,et al.  SPITZER SECONDARY ECLIPSES OF WASP-18b , 2010, 1005.1017.

[5]  T. Barman,et al.  HIGH-RESOLUTION, DIFFERENTIAL, NEAR-INFRARED TRANSMISSION SPECTROSCOPY OF GJ 1214b , 2011, 1104.1173.

[6]  Douglas N. C. Lin,et al.  WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation , 2010, Nature.

[7]  Anthony H. Gonzalez,et al.  LOW-RESOLUTION SPECTRAL TEMPLATES FOR ACTIVE GALACTIC NUCLEI AND GALAXIES FROM 0.03 TO 30 μm , 2010 .

[8]  D. Hall,et al.  Spectra of Late-Type Standard Stars in the Region 2.0--2.5 Microns , 1986 .

[9]  Simon Albrecht,et al.  The signature of orbital motion from the dayside of the planet τ Boötis b , 2012, Nature.

[10]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[11]  Tetsuo Nishimura,et al.  Multi-Object Infrared Camera and Spectrograph (MOIRCS) for the Subaru Telescope* I. Imaging , 2008 .

[12]  K. Luhman,et al.  SPECTROSCOPY OF PUTATIVE BROWN DWARFS IN TAURUS , 2010, 1005.2675.

[13]  Tetsuo Nishimura,et al.  Performance of HAWAII-2 FPAs for multi-object infrared camera and spectrograph , 2003, SPIE Astronomical Telescopes + Instrumentation.

[14]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[15]  G. L. Wycoff,et al.  The Second US Naval Observatory CCD Astrograph Catalog (UCAC2) , 2004, astro-ph/0403060.

[16]  T. Barman,et al.  Near infrared spectroscopic search for the close orbiting planet HD 75289b , 2007, 0705.0272.

[17]  S. Seager,et al.  ON THE INFERENCE OF THERMAL INVERSIONS IN HOT JUPITER ATMOSPHERES , 2010, 1010.4585.

[18]  A. T. Tokunaga,et al.  The Mauna Kea observatories near-infrared filter set. II. Specifications for a new JHKL ' M ' filter set for infrared astronomy , 2001 .

[19]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[20]  R. J. Assef,et al.  Low Resolution Spectral Templates for AGNs and Galaxies , 2009, 1004.5415.

[21]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[22]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[23]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[24]  Th. Henning,et al.  Binarity of transit host stars - Implications for planetary parameters , 2009, 0902.2179.

[25]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[26]  A. Burrows,et al.  Ks-BAND DETECTION OF THERMAL EMISSION AND COLOR CONSTRAINTS TO CoRoT-1b: A LOW-ALBEDO PLANET WITH INEFFICIENT ATMOSPHERIC ENERGY REDISTRIBUTION AND A TEMPERATURE INVERSION* , 2009 .

[27]  Raetz,et al.  High-precision photometry of WASP-12 b transits , 2011 .

[28]  David Charbonneau,et al.  MULTIWAVELENGTH CONSTRAINTS ON THE DAY–NIGHT CIRCULATION PATTERNS OF HD 189733b , 2008, 0802.1705.

[29]  J. Christou,et al.  Restoration of Astronomical Images by Iterative Blind Deconvolution , 1993 .

[30]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[31]  Joshua N. Winn,et al.  THE TRANSIT LIGHT-CURVE PROJECT. XIV. CONFIRMATION OF ANOMALOUS RADII FOR THE EXOPLANETS TrES-4b, HAT-P-3b, AND WASP-12b , 2011, 1103.3078.

[32]  V. Belokurov,et al.  Light and motion in SDSS Stripe 82: The catalogues , 2008, 0801.4894.

[33]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[34]  Travis Barman,et al.  GROUND-BASED, NEAR-INFRARED EXOSPECTROSCOPY. II. TENTATIVE DETECTION OF EMISSION FROM THE EXTREMELY HOT JUPITER WASP-12b , 2012, 1201.1023.

[35]  Ignasi Ribas,et al.  WEIGHING THE NON-TRANSITING HOT JUPITER τ Boo b , 2012, 1206.6197.

[36]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[37]  Jessica R. Lu,et al.  IMPROVING GALACTIC CENTER ASTROMETRY BY REDUCING THE EFFECTS OF GEOMETRIC DISTORTION , 2010 .

[38]  Adam Burrows,et al.  EXPLORATIONS INTO THE VIABILITY OF COUPLED RADIUS–ORBIT EVOLUTIONARY MODELS FOR INFLATED PLANETS , 2009, 0910.5928.

[39]  Geronimo L. Villanueva,et al.  NON-DETECTION OF L-BAND LINE EMISSION FROM THE EXOPLANET HD189733b , 2010, 1011.5507.

[40]  Tetsuo Nishimura,et al.  MOIRCS: multi-object infrared camera and spectrograph for SUBARU , 2006, SPIE Astronomical Telescopes + Instrumentation.

[41]  Gunter Wiedemann,et al.  Non-LTE CO, revisited , 1989 .

[42]  R. L. Kurucz,et al.  New Grids of ATLAS9 Model Atmospheres , 2004, astro-ph/0405087.

[43]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM WASP-12b: DETECTIONS OF THE SECONDARY ECLIPSE IN Ks, H, AND J , 2010, 1009.0071.

[44]  Peter H. Hauschildt,et al.  Phase-dependent Properties of Extrasolar Planet Atmospheres , 2005 .

[45]  James E. Larkin,et al.  Design and development of NIRSPEC: a near-infrared echelle spectrograph for the Keck II telescope , 1998, Astronomical Telescopes and Instrumentation.

[46]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[47]  Avi Shporer,et al.  Orbital eccentricity of WASP-12 and WASP-14 from new radial velocity monitoring with SOPHIE★ , 2010, Monthly Notices of the Royal Astronomical Society.

[48]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[49]  D. Charbonneau,et al.  DETECTION OF PLANETARY EMISSION FROM THE EXOPLANET TrES-2 USING SPITZER/IRAC , 2009, 0909.3073.

[50]  J. Fortney,et al.  THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2011, 1111.5621.

[51]  Leslie Hebb,et al.  ON THE ORBIT OF EXOPLANET WASP-12b , 2010, 1003.2763.

[52]  S. DesideraM. Barbieri Properties of planets in binary systems - The role of binary separation , 2007 .

[53]  Drake Deming,et al.  A New Search for Carbon Monoxide Absorption in the Transmission Spectrum of the Extrasolar Planet HD 209458b , 2004, astro-ph/0412436.

[54]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[55]  R. P. Butler,et al.  OBLIQUITIES OF HOT JUPITER HOST STARS: EVIDENCE FOR TIDAL INTERACTIONS AND PRIMORDIAL MISALIGNMENTS , 2012, 1206.6105.

[56]  Peter Bodenheimer,et al.  The Effect of Tidal Inflation Instability on the Mass and Dynamical Evolution of Extrasolar Planets with Ultrashort Periods , 2003, astro-ph/0303362.

[57]  Peter H. Hauschildt,et al.  Irradiated planets , 2001, astro-ph/0104262.

[58]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[59]  R. G. West,et al.  WASP-12b: THE HOTTEST TRANSITING EXTRASOLAR PLANET YET DISCOVERED , 2008, 0812.3240.

[60]  A. Burrows,et al.  THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS , 2011, 1112.0574.

[61]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[62]  Brian D. Mason,et al.  The 2001 US Naval Observatory Double Star CD-ROM. I. The Washington Double Star Catalog , 2001 .

[63]  Mercedes Lopez-Morales,et al.  DAY-SIDE z′-BAND EMISSION AND ECCENTRICITY OF WASP-12b , 2009, 0912.2359.

[64]  W. Vacca,et al.  Nonlinearity Corrections and Statistical Uncertainties Associated with Near‐Infrared Arrays , 2004, astro-ph/0401379.

[65]  Gautam Vasisht,et al.  A ground-based near-infrared emission spectrum of the exoplanet HD 189733b , 2010, Nature.

[66]  I. Boisse,et al.  Exoplanet transmission spectroscopy: accounting for the eccentricity and the longitude of periastron - Superwinds in the upper atmosphere of HD 209458b? , 2011, 1102.0464.

[67]  M. Nagasawa,et al.  Formation of Hot Planets by a Combination of Planet Scattering, Tidal Circularization, and the Kozai Mechanism , 2008, 0801.1368.

[68]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[69]  Peter Bodenheimer,et al.  On the Tidal Inflation of Short-Period Extrasolar Planets , 2001 .

[70]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[71]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM TrES-3b: A Ks-BAND DETECTION AND AN H-BAND UPPER LIMIT ON THE DEPTH OF THE SECONDARY ECLIPSE , 2010, 1006.0737.

[72]  E. Agol,et al.  THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS , 2009, 1001.0012.

[73]  L. Hillenbrand,et al.  The Stellar Populations of Praesepe and Coma Berenices , 2007, 0708.2719.

[74]  S. Lord A new software tool for computing Earth's atmospheric transmission of near- and far-infrared radiation , 1992 .

[75]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[76]  John T. Rayner,et al.  An Infrared Spectroscopic Sequence of M, L, and T Dwarfs , 2004, astro-ph/0412313.