Total-variation regularization with bound constraints

We present a new algorithm for bound-constrained totalvariation (TV) regularization that in comparison with its predecessors is simple, fast, and flexible. We use a splitting approach to decouple TV minimization from enforcing the constraints. Consequently, existing TV solvers can be employed with minimal alteration. This also makes the approach straightforward to generalize to any situation where TV can be applied. We consider deblurring of images with Gaussian or salt-and-pepper noise, as well as Abel inversion of radiographs with Poisson noise.

[1]  Andy M. Yip,et al.  A Primal-Dual Active-Set Method for Non-Negativity Constrained Total Variation Deblurring Problems , 2007, IEEE Transactions on Image Processing.

[2]  Mila Nikolova,et al.  Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..

[3]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[4]  R. Chartrand,et al.  Total variation regularisation of images corrupted by non-Gaussian noise using a quasi-Newton method , 2008 .

[5]  Brendt Wohlberg,et al.  Efficient Minimization Method for a Generalized Total Variation Functional , 2009, IEEE Transactions on Image Processing.

[6]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[7]  R. Chartrand,et al.  Abel inversion using total-variation regularization , 2005 .

[8]  Junfeng Yang,et al.  An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..

[9]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[10]  Brendt Wohlberg,et al.  AN ℓ1-TV algorithm for deconvolution with salt and pepper noise , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[11]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[12]  E. Sidky,et al.  Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT , 2009, 0904.4495.

[13]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[14]  Los Angeles,et al.  Dual Methods for Total Variation-Based Image , 2001 .

[15]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[16]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[17]  Rick Chartrand,et al.  Numerical Differentiation of Noisy, Nonsmooth Data , 2011 .

[18]  T. Chan,et al.  On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration , 1999 .

[19]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[20]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[21]  Wotao Yin,et al.  Second-order Cone Programming Methods for Total Variation-Based Image Restoration , 2005, SIAM J. Sci. Comput..

[22]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .