Asymptotic and Bootstrap Tests for the Dimension of the Non-Gaussian Subspace
暂无分享,去创建一个
Joni Virta | Klaus Nordhausen | Hannu Oja | David E. Tyler | David E. Tyler | K. Nordhausen | H. Oja | Joni Virta
[1] Motoaki Kawanabe,et al. Uniqueness of Non-Gaussianity-Based Dimension Reduction , 2011, IEEE Transactions on Signal Processing.
[2] Hannu Oja,et al. Invariant Coordinate Selection , 2008 .
[3] David E. Tyler,et al. Invariant co‐ordinate selection , 2009 .
[4] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[5] Jean-Francois Cardoso,et al. Source separation using higher order moments , 1989, International Conference on Acoustics, Speech, and Signal Processing,.
[6] Gang Niu,et al. Non-Gaussian Component Analysis with Log-Density Gradient Estimation , 2015, AISTATS.
[7] K. Nordhausen,et al. Projection Pursuit for non-Gaussian Independent Components , 2016, 1612.05445.
[8] Derek Merrill Bean. Non-Gaussian Component Analysis , 2014 .
[9] Klaus Nordhausen,et al. Asymptotic and bootstrap tests for subspace dimension , 2016, J. Multivar. Anal..
[10] David S. Matteson,et al. Linear Non-Gaussian Component Analysis Via Maximum Likelihood , 2015, Journal of the American Statistical Association.
[11] David E. Tyler,et al. ON WIELANDT'S INEQUALITY AND ITS APPLICATION TO THE ASYMPTOTIC DISTRIBUTION OF THE EIGENVALUES OF A RANDOM SYMMETRIC MATRIX , 1991 .
[12] Wei Luo,et al. Combining eigenvalues and variation of eigenvectors for order determination , 2016 .
[13] R. Weiss,et al. Using the Bootstrap to Select One of a New Class of Dimension Reduction Methods , 2003 .
[14] Motoaki Kawanabe,et al. Non-Gaussian Component Analysis: a Semi-parametric Framework for Linear Dimension Reduction , 2005, NIPS.
[15] Hannu Oja,et al. Tests of multinormality based on location vectors and scatter matrices , 2007, Stat. Methods Appl..
[16] H. Oja,et al. Scatter Matrices and Independent Component Analysis , 2006 .