Space-time duality and the theory of temporal imaging

There exists a beautiful duality between the equations that describe the paraxial diffraction of beams confined in space and the dispersion of narrow-band pulses in dielectrics. We will see that this duality leads naturally to the conclusion that a quadratic phase modulation in time is the analog of a thin lens in space. Therefore, by a suitable combination of dispersion and quadratic phase modulation (now a "time lens"), we can synthesize the time-domain analog of an imaging system. Such a temporal-imaging system can magnify time waveforms in the same manner as conventional spatial-imaging systems magnify scenes. We analyze this space-time duality and derive expressions for the focal length and f-number of a time lens. In addition, the principles of temporal imaging are developed and we derive time-domain analogs for the imaging condition, magnification ratio, and impulse response of a temporal-imaging system. >

[1]  J. Klauder,et al.  The theory and design of chirp radars , 1960 .

[2]  Paul W. Berg,et al.  Elementary Partial Differential Equations , 1966 .

[3]  M. Duguay,et al.  Compression of optical pulses , 1968 .

[4]  Anatoly P. Sukhorukov,et al.  Nonstationary nonlinear optical effects and ultra-short light pulse formation , 1968 .

[5]  J. Goodman Introduction to Fourier optics , 1969 .

[6]  E. Treacy Optical pulse compression with diffraction gratings , 1969 .

[7]  A. Chirkin,et al.  Nonstationary Phenomena and Space-time Analogy in Nonlinear Optics , 1969 .

[8]  William J. Caputi,et al.  Stretch: A Time-Transformation Technique , 1971, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Daniel R. Grischkowsky,et al.  Optical Pulse Compression , 1974, Topical Meeting on Ultrafast Phenomena.

[10]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[11]  John E. Bjorkholm,et al.  Conversion of cw light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near‐resonant atomic vapor , 1975 .

[12]  F. Stremler Introduction to Communication Systems , 1977 .

[13]  Daniel R. Grischkowsky,et al.  Temporal compression of light , 1978 .

[14]  T. Jannson,et al.  Temporal self-imaging effect in single-mode fibers , 1981 .

[15]  Daniel R. Grischkowsky,et al.  Optical pulse compression based on enhanced frequency chirping , 1982 .

[16]  T Jannson,et al.  Real-time Fourier transformation in dispersive optical fibers. , 1983, Optics letters.

[17]  H. Haus Waves and fields in optoelectronics , 1983 .

[18]  Reversal and reconstruction of the profile of ultrashort light pulses , 1985 .

[19]  S. A. Akhmanov,et al.  REVIEWS OF TOPICAL PROBLEMS: Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation , 1986 .

[20]  M. Haner,et al.  Generation of programmable, picosecond-resolution shaped laser pulses by fiber-grating pulse compression. , 1987, Optics Letters.

[21]  P. Becker,et al.  Compression of optical pulses to six femtoseconds by using cubic phase compensation. , 1987, Optics letters.

[22]  B. Kolner Active pulse compression using an integrated electro-optic phase modulator , 1988 .

[23]  Warren S. Warren,et al.  Synthesis of crafted optical pulses by time domain modulation in a fiber‐grating compressor , 1988 .

[24]  Brian H. Kolner Active Pulse Compression , 1988 .

[25]  I. Christov Design of a compound time lens , 1989 .

[26]  A. G. Kostenbauder,et al.  Ray-pulse matrices: a rational treatment for dispersive optical systems , 1990 .

[27]  Ivan P. Christov,et al.  Theory of a ‘time telescope’ , 1990 .

[28]  Andrew Dienes,et al.  ABCD matrices for dispersive pulse propagation , 1990 .

[29]  D Mendlovic,et al.  Temporal perfect-shuffle optical processor. , 1992, Optics letters.

[30]  A. Lohmann,et al.  Temporal filtering with time lenses. , 1992, Applied optics.

[31]  B. Auld,et al.  Time‐lens producing 1.9 ps optical pulses , 1993 .