Comparative Study of Kriging and Support Vector Regression for Structural Engineering Applications
暂无分享,去创建一个
Bruno Sudret | Jean-Marc Bourinet | Maliki Moustapha | Benoît Guillaume | Jean-Marc Bourinet | B. Sudret | M. Moustapha | B. Guillaume
[1] D. Krige. A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .
[2] Maurice Lemaire,et al. Assessing small failure probabilities by combined subset simulation and Support Vector Machines , 2011 .
[3] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[4] Masoud Rais-Rohani,et al. A comparative study of metamodeling methods for multiobjective crashworthiness optimization , 2005 .
[5] Sharif Rahman,et al. Structural reliability analysis by univariate decomposition and numerical integration , 2007 .
[6] J. Franco. Planification d'expériences numériques en phase exploratoire pour la simulation des phénomènes complexes , 2008 .
[7] W. Pitts,et al. A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.
[8] Yves Deville,et al. DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization , 2012 .
[9] A. Kiureghian,et al. Optimization algorithms for structural reliability , 1991 .
[10] B. Sudret,et al. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .
[11] Søren Nymand Lophaven,et al. DACE - A Matlab Kriging Toolbox, Version 2.0 , 2002 .
[12] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[13] Peter W. Glynn,et al. Stochastic Simulation: Algorithms and Analysis , 2007 .
[14] Corinna Cortes,et al. Support-Vector Networks , 1995, Machine Learning.
[15] David S. Broomhead,et al. Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..
[16] Michael James Sasena,et al. Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. , 2002 .
[17] Olivier Chapelle,et al. Support Vector Machines : principes d'induction, Réglage automatique et connaissances à priori , 2004 .
[18] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.
[19] Christopher K. I. Williams,et al. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .
[20] Min Xie,et al. A systematic comparison of metamodeling techniques for simulation optimization in Decision Support Systems , 2010, Appl. Soft Comput..
[21] P. C. Gehlen,et al. Computer Experiments , 1996 .
[22] A. OHagan,et al. Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..
[23] James A. Anderson,et al. Neurocomputing: Foundations of Research , 1988 .
[24] François Bachoc,et al. Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification , 2013, Comput. Stat. Data Anal..
[25] R. Brereton,et al. Support vector machines for classification and regression. , 2010, The Analyst.
[26] Donald R. Jones,et al. A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..
[27] David Ginsbourger,et al. Multiples métamodèles pour l'approximation et l'optimisation de fonctions numériques multivariables , 2009 .
[28] J. Beck,et al. Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation , 2001 .
[29] Jorge E. Hurtado,et al. Filtered importance sampling with support vector margin: A powerful method for structural reliability analysis , 2007 .
[30] Achille Messac,et al. Metamodeling using extended radial basis functions: a comparative approach , 2006, Engineering with Computers.
[31] Etienne de Rocquigny,et al. Modelling Under Risk and Uncertainty: An Introduction to Statistical, Phenomenological and Computational Methods , 2012 .
[32] T. Simpson,et al. Comparative studies of metamodeling techniques under multiple modeling criteria , 2000 .
[33] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[34] Nielen Stander,et al. Stochastic analysis of highly non‐linear structures , 2006 .
[35] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[36] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[37] Sonja Kuhnt,et al. Design and analysis of computer experiments , 2010 .
[38] V. Vapnik,et al. Bounds on Error Expectation for Support Vector Machines , 2000, Neural Computation.
[39] G. Blatman B. Sudret,et al. Reliability analysis of a pressurized water reactor vessel using sparse polynomial chaos expansions , 2010 .
[40] Søren Nymand Lophaven,et al. Aspects of the Matlab toolbox DACE , 2002 .
[41] Bernhard Schölkopf,et al. A tutorial on support vector regression , 2004, Stat. Comput..
[42] V. Dubourg. Adaptive surrogate models for reliability analysis and reliability-based design optimization , 2011 .
[43] Jean-Marc Bourinet,et al. RELIABILITY ASSESSMENT WITH ADAPTIVE SURROGATES BASED ON SUPPORT VECTOR MACHINE REGRESSION , 2015 .
[44] Victor Picheny,et al. Adaptive Designs of Experiments for Accurate Approximation of a Target Region , 2010 .
[45] Nikolaus Hansen,et al. Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.
[46] Stefano Marelli,et al. UQLab: a framework for uncertainty quantification in MATLAB , 2014 .
[47] Shie-Jue Lee,et al. A multiple-kernel support vector regression approach for stock market price forecasting , 2011, Expert Syst. Appl..
[48] Bertrand Iooss,et al. An efficient methodology for modeling complex computer codes with Gaussian processes , 2008, Comput. Stat. Data Anal..
[49] Liquan Mei,et al. Reasons for Scatter in Crash Simulation Results , 2003 .
[50] M. Bompard. MODÈLES DE SUBSTITUTION POUR L'OPTIMISATION GLOBALE DE FORME EN AÉRODYNAMIQUE ET MÉTHODE LOCALE SANS PARAMÉTRISATION , 2011 .
[51] Dong Zhao,et al. A comparative study of metamodeling methods considering sample quality merits , 2010 .
[52] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[53] Damiano Pasini,et al. A comparative study of metamodeling methods for the design optimization of variable stiffness composites , 2014 .
[54] Sayan Mukherjee,et al. Choosing Multiple Parameters for Support Vector Machines , 2002, Machine Learning.
[55] G. Box,et al. Empirical Model-Building and Response Surfaces. , 1990 .
[56] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[57] Robert E. Shannon,et al. Design and analysis of simulation experiments , 1978, WSC '78.
[58] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[59] M. Aizerman,et al. Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .
[60] Ming-Wei Chang,et al. Leave-One-Out Bounds for Support Vector Regression Model Selection , 2005, Neural Computation.
[61] Emmanuel Vazquez,et al. Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applications , 2005 .
[62] Robert A. Lordo,et al. Learning from Data: Concepts, Theory, and Methods , 2001, Technometrics.
[63] M. Balesdent,et al. Kriging-based adaptive Importance Sampling algorithms for rare event estimation , 2013 .