Nonnegative Matrix Factorization for Signal and Data Analytics: Identifiability, Algorithms, and Applications

Nonnegative matrix factorization (NMF) aims to factor a data matrix into low-rank latent factor matrices with nonnegativity constraints.

[1]  Nikolaos D. Sidiropoulos,et al.  Putting nonnegative matrix factorization to the test: a tutorial derivation of pertinent cramer—rao bounds and performance benchmarking , 2014, IEEE Signal Processing Magazine.

[2]  Zhaoshui He,et al.  Minimum-Volume-Constrained Nonnegative Matrix Factorization: Enhanced Ability of Learning Parts , 2011, IEEE Transactions on Neural Networks.

[3]  M. C. U. Araújo,et al.  The successive projections algorithm for variable selection in spectroscopic multicomponent analysis , 2001 .

[4]  Asa Packer NP -Hardness of Largest Contained and Smallest Containing Simplices for V- and H-Polytopes , 2002, Discret. Comput. Geom..

[5]  Nicolas Gillis,et al.  Introduction to Nonnegative Matrix Factorization , 2017, ArXiv.

[6]  Nicolas Gillis,et al.  Fast and Robust Recursive Algorithmsfor Separable Nonnegative Matrix Factorization , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Fillia Makedon,et al.  Learning from Incomplete Ratings Using Non-negative Matrix Factorization , 2006, SDM.

[8]  Yue Wang,et al.  Maximum Volume Inscribed Ellipsoid: A New Simplex-Structured Matrix Factorization Framework via Facet Enumeration and Convex Optimization , 2017, SIAM J. Imaging Sci..

[9]  Nicolas Gillis,et al.  The Why and How of Nonnegative Matrix Factorization , 2014, ArXiv.

[10]  T. H. Andel,et al.  Vector Analysis of Heavy-Mineral Data , 1964 .

[11]  Balaji Lakshminarayanan,et al.  Non-negative matrix factorization for parameter estimation in hidden Markov models , 2010, 2010 IEEE International Workshop on Machine Learning for Signal Processing.

[12]  Vikas Sindhwani,et al.  Fast Conical Hull Algorithms for Near-separable Non-negative Matrix Factorization , 2012, ICML.

[13]  Nikos D. Sidiropoulos,et al.  Blind Separation of Quasi-Stationary Sources: Exploiting Convex Geometry in Covariance Domain , 2015, IEEE Transactions on Signal Processing.

[14]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[15]  Maurice D. Craig,et al.  Minimum-volume transforms for remotely sensed data , 1994, IEEE Trans. Geosci. Remote. Sens..

[16]  Nicolas Gillis,et al.  Robustness Analysis of Hottopixx, a Linear Programming Model for Factoring Nonnegative Matrices , 2012, SIAM J. Matrix Anal. Appl..

[17]  David Mary,et al.  Blind and Fully Constrained Unmixing of Hyperspectral Images , 2014, IEEE Transactions on Image Processing.

[18]  James P. Reilly,et al.  A frequency domain method for blind source separation of convolutive audio mixtures , 2005, IEEE Transactions on Speech and Audio Processing.

[19]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[20]  Nicolas Gillis,et al.  A Fast Gradient Method for Nonnegative Sparse Regression With Self-Dictionary , 2016, IEEE Transactions on Image Processing.

[21]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[22]  José M. Bioucas-Dias,et al.  Self-Dictionary Sparse Regression for Hyperspectral Unmixing: Greedy Pursuit and Pure Pixel Search Are Related , 2014, IEEE Journal of Selected Topics in Signal Processing.

[23]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Bo Yang,et al.  Robust Volume Minimization-Based Matrix Factorization for Remote Sensing and Document Clustering , 2016, IEEE Transactions on Signal Processing.

[25]  Chong-Yung Chi,et al.  A Convex Analysis Framework for Blind Separation of Non-Negative Sources , 2008, IEEE Transactions on Signal Processing.

[26]  Nikos D. Sidiropoulos,et al.  Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.

[27]  Hairong Qi,et al.  Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Sanjeev Arora,et al.  Learning Topic Models -- Going beyond SVD , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[29]  Nancy Bertin,et al.  Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis , 2009, Neural Computation.

[30]  Yu-Jin Zhang,et al.  Nonnegative Matrix Factorization: A Comprehensive Review , 2013, IEEE Transactions on Knowledge and Data Engineering.

[31]  Wotao Yin,et al.  A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..

[32]  Mingyi Hong,et al.  Anchor-Free Correlated Topic Modeling , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Paul D. Gader,et al.  A Signal Processing Perspective on Hyperspectral Unmixing , 2014 .

[34]  Chong-Yung Chi,et al.  A Simplex Volume Maximization Framework for Hyperspectral Endmember Extraction , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Nikos D. Sidiropoulos,et al.  Batch and Adaptive PARAFAC-Based Blind Separation of Convolutive Speech Mixtures , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[36]  Mark D. Plumbley,et al.  Theorems on Positive Data: On the Uniqueness of NMF , 2008, Comput. Intell. Neurosci..

[37]  Nikos D. Sidiropoulos,et al.  Learning Hidden Markov Models from Pairwise Co-occurrences with Applications to Topic Modeling , 2018, ICML.

[38]  Antonio J. Plaza,et al.  Collaborative nonnegative matrix factorization for remotely sensed hyperspectral unmixing , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[39]  Wei-Chiang Li,et al.  Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing: The No-Pure-Pixel Case , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Xiao Fu,et al.  On Identifiability of Nonnegative Matrix Factorization , 2017, IEEE Signal Processing Letters.

[41]  Andrzej Cichocki,et al.  Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations , 2009, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[42]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[43]  José M. Bioucas-Dias,et al.  Minimum Volume Simplex Analysis: A Fast Algorithm to Unmix Hyperspectral Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[44]  Nicolas Gillis,et al.  Successive Nonnegative Projection Algorithm for Robust Nonnegative Blind Source Separation , 2013, SIAM J. Imaging Sci..

[45]  Michael Möller,et al.  A Convex Model for Nonnegative Matrix Factorization and Dimensionality Reduction on Physical Space , 2011, IEEE Transactions on Image Processing.

[46]  Stephen A. Vavasis,et al.  On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..

[47]  Zhi-Quan Luo,et al.  A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization , 2012, SIAM J. Optim..

[48]  Andreas Ziehe,et al.  A Fast Algorithm for Joint Diagonalization with Non-orthogonal Transformations and its Application to Blind Source Separation , 2004, J. Mach. Learn. Res..

[49]  Nikos D. Sidiropoulos,et al.  A Flexible and Efficient Algorithmic Framework for Constrained Matrix and Tensor Factorization , 2015, IEEE Transactions on Signal Processing.

[50]  Nikos D. Sidiropoulos,et al.  Non-Negative Matrix Factorization Revisited: Uniqueness and Algorithm for Symmetric Decomposition , 2014, IEEE Transactions on Signal Processing.

[51]  Andreas T. Ernst,et al.  ICE: a statistical approach to identifying endmembers in hyperspectral images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Wing-Kin Ma,et al.  Robustness Analysis of Structured Matrix Factorization via Self-Dictionary Mixed-Norm Optimization , 2016, IEEE Signal Processing Letters.

[53]  Inderjit S. Dhillon,et al.  Efficient and Non-Convex Coordinate Descent for Symmetric Nonnegative Matrix Factorization , 2015, IEEE Transactions on Signal Processing.

[54]  Nicolas Gillis,et al.  Semidefinite Programming Based Preconditioning for More Robust Near-Separable Nonnegative Matrix Factorization , 2013, SIAM J. Optim..

[55]  Sanjeev Arora,et al.  A Practical Algorithm for Topic Modeling with Provable Guarantees , 2012, ICML.

[56]  Victoria Stodden,et al.  When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts? , 2003, NIPS.

[57]  James Zou,et al.  Intersecting Faces: Non-negative Matrix Factorization With New Guarantees , 2015, ICML.

[58]  Wady Naanaa,et al.  Blind source separation of positive and partially correlated data , 2005, Signal Process..

[59]  Songtao Lu,et al.  Inexact Block Coordinate Descent Methods for Symmetric Nonnegative Matrix Factorization , 2016, IEEE Transactions on Signal Processing.

[60]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorizations : An algorithmic perspective , 2014, IEEE Signal Processing Magazine.

[61]  Arie Yeredor,et al.  Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation , 2002, IEEE Trans. Signal Process..

[62]  Tomohiko Mizutani,et al.  Ellipsoidal rounding for nonnegative matrix factorization under noisy separability , 2013, J. Mach. Learn. Res..

[63]  Gene H. Golub,et al.  Matrix computations , 1983 .

[64]  Ji-Cheng Chen The nonnegative rank factorizations of nonnegative matrices , 1984 .

[65]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[66]  Maxim Panov,et al.  Consistent Estimation of Mixed Memberships with Successive Projections , 2017, COMPLEX NETWORKS.

[67]  Chong-Yung Chi,et al.  A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing , 2009, IEEE Transactions on Signal Processing.

[68]  Nikos D. Sidiropoulos,et al.  Robust volume minimization-based matrix factorization via alternating optimization , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[69]  Deng Cai,et al.  Probabilistic dyadic data analysis with local and global consistency , 2009, ICML '09.

[70]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[71]  Pablo Tamayo,et al.  Metagenes and molecular pattern discovery using matrix factorization , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[72]  José M. Bioucas-Dias,et al.  A variable splitting augmented Lagrangian approach to linear spectral unmixing , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[73]  Nikos D. Sidiropoulos,et al.  Power Spectra Separation via Structured Matrix Factorization , 2016, IEEE Transactions on Signal Processing.

[74]  Joel A. Tropp,et al.  Factoring nonnegative matrices with linear programs , 2012, NIPS.

[75]  Nikos D. Sidiropoulos,et al.  Anchor-Free Correlated Topic Modeling: Identifiability and Algorithm , 2016, NIPS.

[76]  Purnamrita Sarkar,et al.  On Mixed Memberships and Symmetric Nonnegative Matrix Factorizations , 2016, ICML.