Non-autonomous scalar linear-dissipative and purely dissipative parabolic PDEs over a compact base flow

Abstract In this paper a family of non-autonomous scalar parabolic PDEs over a general compact and connected flow is considered. The existence or not of a neighbourhood of zero where the problems are linear has an influence on the methods used and on the dynamics of the induced skew-product semiflow. That is why two cases are distinguished: linear-dissipative and purely dissipative problems. In both cases, the structure of the global and pullback attractors is studied using principal spectral theory. Besides, in the purely dissipative setting, a simple condition is given, involving both the underlying linear dynamics and some properties of the nonlinear term, to determine the nontrivial sections of the attractor.

[1]  Robert Ellis,et al.  Lectures in Topological Dynamics , 1969 .

[2]  R. Obaya,et al.  Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay , 2019, Discrete & Continuous Dynamical Systems - B.

[3]  Janusz Mierczyński,et al.  Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications , 2008 .

[4]  Paul C. Fife,et al.  Comparison principles for reaction-diffusion systems: Irregular comparison functions and applications to questions of stability and speed of propagation of disturbances , 1981 .

[5]  E. F. Infante,et al.  A Bifurcation Problem for a Nonlinear Partial Differential Equation of Parabolic Type. , 1974 .

[6]  P. Polácik,et al.  Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations , 1993 .

[7]  George R. Sell,et al.  Ergodic properties of linear dynamical systems , 1987 .

[8]  J. Langa,et al.  Forwards attraction properties in scalar non-autonomous linear–dissipative parabolic PDEs. The case of null upper Lyapunov exponent , 2019, Nonlinearity.

[9]  James F. Selgrade,et al.  Isolated invariant sets for flows on vector bundles , 1975 .

[10]  T. Caraballo,et al.  Pullback, forward and chaotic dynamics in 1D non-autonomous linear-dissipative equations , 2016 .

[11]  W. Shen,et al.  Lyapunov exponents and asymptotic dynamics in random Kolmogorov models , 2004 .

[12]  George R. Sell,et al.  Dichotomies for linear evolutionary equations in Banach spaces , 1994 .

[13]  Janusz Mierczyński,et al.  Exponential separation and principal Lyapunov exponent/spectrum for random/nonautonomous parabolic equations , 2003 .

[14]  George R. Sell,et al.  Existence of dichotomies and invariant splittings for linear differential systems, II☆ , 1976 .

[15]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[16]  Asymptotic stability without uniform stability: Almost periodic coefficients , 1965 .

[17]  J. Moser,et al.  The rotation number for almost periodic potentials , 1982 .

[18]  P. Kloeden,et al.  TWO-STEP TRANSITION IN NONAUTONOMOUS BIFURCATIONS: AN EXPLANATION , 2002 .

[19]  G. Cantor Sur les séries trigonométriques , 1883 .

[20]  R. Obaya,et al.  Uniform persistence and upper Lyapunov exponents for monotone skew-product semiflows , 2013 .

[21]  T. Caraballo,et al.  Global and cocycle attractors for non-autonomous reaction-diffusion equations. The case of null upper Lyapunov exponent , 2018, Journal of Differential Equations.

[22]  George R. Sell,et al.  A Spectral Theory for Linear Differential Systems , 1978 .

[23]  Yingfei Yi,et al.  Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows , 1998 .

[24]  R. Obaya,et al.  Li–Yorke chaos in nonautonomous Hopf bifurcation patterns—I , 2019, Nonlinearity.

[25]  Christian Pötzsche,et al.  Nonautonomous Dynamical Systems , 2010 .

[26]  I. Chueshov Monotone Random Systems Theory and Applications , 2002 .

[27]  R. Obaya,et al.  Almost Automorphic and Almost Periodic Dynamics for Quasimonotone Non-Autonomous Functional Differential Equations , 2005 .

[28]  James C. Robinson,et al.  Structure and bifurcation of pullback attractors in a non-autonomous Chafee-Infante equation , 2012 .

[29]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[30]  José A. Langa,et al.  Attractors for infinite-dimensional non-autonomous dynamical systems , 2012 .

[31]  Yingfei Yi,et al.  Convergence in almost periodic Fisher and Kolmogorov models , 1998 .

[32]  C. A. Cardoso,et al.  Characterization of Cocycle Attractors for Nonautonomous Reaction-Diffusion Equations , 2016, Int. J. Bifurc. Chaos.

[33]  R. Obaya,et al.  Minimal sets in monotone and sublinear skew-product semiflows I: The general case , 2010 .