Entropy Inequality for High Order Discontinuous Galerkin Approximation of Euler Equations

This paper is devoted to the presentation of a new family of high order numerical schemes in space (first order in time) for the numerical solution of the Euler equations. We restrict the presentation to the 1D case. Full extention to the multi-dimensional case is discussed in [9] with complete discussion of the entropy properties and some numerical simulations. See [8] for an elementary discussion of the entropy inequality.

[1]  B. Després,et al.  SUR UNE FORMULATION VARIATIONNELLE DE TYPE ULTRA-FAIBLE , 1994 .

[2]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[3]  Bernardo Cockburn,et al.  The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws , 1988 .

[4]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[5]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[6]  B. Després,et al.  Fonctionnelle quadratique et équations intégrales pour les problèmes d'onde harmonique en domaine extérieur , 1997 .

[7]  C. Bernardi,et al.  Approximations spectrales de problèmes aux limites elliptiques , 2003 .

[8]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[9]  P. Roe Modern Numerical Methods Applicable to Stellar Pulsation , 1990 .

[10]  Chi-Wang Shu,et al.  On a cell entropy inequality for discontinuous Galerkin methods , 1994 .

[11]  O. Cessenat,et al.  Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .

[12]  B. Després,et al.  Inégalité entropique pour un solveur conservatif du système de la dynamique des gaz en coordonnées de Lagrange , 1997 .