A scaled boundary finite element based explicit topology optimization approach for three‐dimensional structures

[1]  Jianhua Zhou,et al.  A Moving Morphable Void (MMV)-based explicit approach for topology optimization considering stress constraints , 2018, Computer Methods in Applied Mechanics and Engineering.

[2]  Y. Xie,et al.  Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method , 2007 .

[3]  Jian Zhang,et al.  A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model , 2016 .

[4]  O. Sigmund,et al.  Higher‐order multi‐resolution topology optimization using the finite cell method , 2017 .

[5]  Xu Guo,et al.  Symmetry analysis for structural optimization problems involving reliability measure and bi-modulus materials , 2016 .

[6]  Julián A. Norato,et al.  A geometry projection method for the topology optimization of plate structures , 2016 .

[7]  O. Sigmund,et al.  Efficient use of iterative solvers in nested topology optimization , 2010 .

[8]  D. Tortorelli,et al.  A geometry projection method for continuum-based topology optimization with discrete elements , 2015 .

[9]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[10]  Chongmin Song,et al.  Shape sensitivity analysis of stress intensity factors by the scaled boundary finite element method , 2014 .

[11]  Xu Guo,et al.  Some symmetry results for optimal solutions in structural optimization , 2012 .

[12]  Kumar Vemaganti,et al.  Parallel methods for optimality criteria-based topology optimization , 2005 .

[13]  J. Petersson,et al.  Large-scale topology optimization in 3D using parallel computing , 2001 .

[14]  Chang Liu,et al.  An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization , 2018, Structural and Multidisciplinary Optimization.

[15]  Kurt Maute,et al.  Large-scale parallel topology optimization using a dual-primal substructuring solver , 2008 .

[16]  Boyan Stefanov Lazarov,et al.  Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework , 2015 .

[17]  Jie Yuan,et al.  A new three-dimensional topology optimization method based on moving morphable components (MMCs) , 2017 .

[18]  Ole Sigmund,et al.  Topology optimization of large scale stokes flow problems , 2008 .

[19]  Qi Xia,et al.  Shape and topology optimization for tailoring stress in a local region to enhance performance of piezoresistive sensors , 2013 .

[20]  Xu Guo,et al.  Topology optimization with multiple materials via moving morphable component (MMC) method , 2018 .

[21]  Xu Guo,et al.  Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework , 2014 .

[22]  Xu Guo,et al.  Explicit topology optimization using IGA-based moving morphable void (MMV) approach , 2020 .

[23]  Y. Kim,et al.  Parallelized structural topology optimization for eigenvalue problems , 2004 .

[24]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[25]  Ole Sigmund,et al.  On the (non-)optimality of Michell structures , 2016, Structural and Multidisciplinary Optimization.

[26]  Jian Zhang,et al.  Lagrangian Description Based Topology Optimization—A Revival of Shape Optimization , 2016 .

[27]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[28]  Qui X. Lieu,et al.  A multi-resolution approach for multi-material topology optimization based on isogeometric analysis , 2017 .

[29]  Tam H. Nguyen,et al.  Improving multiresolution topology optimization via multiple discretizations , 2012 .

[30]  Erik Lund,et al.  Topology Optimization - Broadening the Areas of Application , 2005 .

[31]  Chong Ming Song,et al.  A Coupled SBFEM-FEM Approach for Evaluating Stress Intensity Factors , 2013 .

[32]  Tam H. Nguyen,et al.  A computational paradigm for multiresolution topology optimization (MTOP) , 2010 .

[33]  E. Sturler,et al.  Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .

[34]  Gengdong Cheng,et al.  Recent development in structural design and optimization , 2010 .

[35]  Xu Guo,et al.  Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach , 2017, 1704.06060.

[36]  Julián A. Norato,et al.  Adaptive Mesh Refinement for Topology Optimization with Discrete Geometric Components , 2019, Computer Methods in Applied Mechanics and Engineering.

[37]  G. Cheng,et al.  A confirmation of a conjecture on the existence of symmetric optimal solution under multiple loads , 2014 .

[38]  G. Cheng,et al.  Symmetry properties in structural optimization: some extensions , 2013 .

[39]  Jianbin Du,et al.  A generalized DCT compression based density method for topology optimization of 2D and 3D continua , 2018, Computer Methods in Applied Mechanics and Engineering.

[40]  C. Jiang,et al.  Sensitivity analysis of the scaled boundary finite element method for elastostatics , 2014 .

[41]  B. Lazarov,et al.  Parallel framework for topology optimization using the method of moving asymptotes , 2013, Structural and Multidisciplinary Optimization.

[42]  Tielin Shi,et al.  Optimization of structures with thin-layer functional device on its surface through a level set based multiple-type boundary method , 2016 .

[43]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[44]  Jian Zhang,et al.  Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons , 2016 .

[45]  John P. Wolf,et al.  Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method , 2002 .

[46]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[47]  J. Wolf,et al.  The scaled boundary finite-element method – a primer: derivations , 2000 .

[48]  Chris L. Jackins,et al.  Oct-trees and their use in representing three-dimensional objects , 1980 .

[49]  Mary Frecker,et al.  Topology optimization of 2D continua for minimum compliance using parallel computing , 2006 .