Particle Swarm Optimization-based Fuzzy Predictive Control Strategy

Particle Swarm Optimization (PSO) is proposed as an efficient tool for the design of fuzzy predictive control (FPC) strategies. The performance of the proposed method is evaluated in terms of accuracy and computational time. PSO is compared with other evolutionary algorithms such as simple genetic algorithms and niching genetic algorithms. Simulation results that validate the proposed FPC-PSO scheme are presented for a benchmark non-linear series.

[2]  Jianmei Xiao,et al.  PSO-Based Model Predictive Control for Nonlinear Processes , 2005, ICNC.

[3]  H. B. Verbruggen,et al.  Predictive control of nonlinear systems based on fuzzy and neural models , 1999, 1999 European Control Conference (ECC).

[4]  Hazem Nounou,et al.  Fuzzy model predictive control: techniques, stability issues, and examples , 1999, Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014).

[5]  Haralambos Sarimveis,et al.  Fuzzy model predictive control of non-linear processes using genetic algorithms , 2003, Fuzzy Sets Syst..

[6]  Joos Vandewalle,et al.  Predictive Control Using Fuzzy Models Applied to a Steam Generating Unit , 1998 .

[7]  Joos Vandewalle,et al.  Predictive control using fuzzy models — Comparative study , 1999, 1999 European Control Conference (ECC).

[8]  V. Wertz,et al.  Generalized predictive control using Takagi-Sugeno fuzzy models , 1999, Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014).

[9]  Kevin Warwick,et al.  Intelligent control toolkit for an advanced control system , 1998 .

[10]  J. Boaventura Cunha,et al.  Greenhouse air temperature predictive control using the particle swarm optimisation algorithm , 2005 .

[11]  S. C. Shin,et al.  GA-based predictive control for nonlinear processes , 1998 .

[12]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[13]  J. A. Roubos,et al.  Predictive control by local linearization of a Takagi-Sugeno fuzzy model , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[14]  Stephen J. Wright,et al.  Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview , 1999 .

[15]  Reza Langari,et al.  Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques , 1995, IEEE Trans. Fuzzy Syst..

[16]  Joos Vandewalle,et al.  Predictive Control Using Fuzzy Models , 1999 .

[17]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[18]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Derek A. Linkens,et al.  Fuzzy model-based predictive control using an ARX structure with feedforward , 2002, Fuzzy Sets Syst..

[20]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[21]  Uk-Youl Huh,et al.  Fuzzy model based predictive control , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[22]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .