GABAA receptor-mediated networks during focal seizure onset and progression in vitro

Focal seizures are triggered by the pathological synchronization of a functionally altered group of neurons. In vivo and in vitro results in rodents and single unit studies in humans suggest that seizure can be initiated by increased activity in interneuronal networks. We review here the data derived from in vitro perparations to describe the function of GABAergic network in different phases of focal seizures. The data demonstrate that GABA-mediated synchronization of interneuronal activity has an active role in shaping focal seizure dynamics.

[1]  Brendon O. Watson,et al.  Modular Propagation of Epileptiform Activity: Evidence for an Inhibitory Veto in Neocortex , 2006, The Journal of Neuroscience.

[2]  M. Avoli,et al.  On the synchronous activity induced by 4-aminopyridine in the CA3 subfield of juvenile rat hippocampus. , 1993, Journal of neurophysiology.

[3]  E. Halgren,et al.  Single-neuron dynamics in human focal epilepsy , 2011, Nature Neuroscience.

[4]  K. Natsume,et al.  The properties of carbachol-induced beta oscillation in rat hippocampal slices , 2006, Neuroscience Research.

[5]  M. Avoli,et al.  Epileptiform synchronization in the cingulate cortex , 2009, Epilepsia.

[6]  M. de Curtis,et al.  Simultaneous enhancement of excitation and postburst inhibition at the end of focal seizures , 2014, Annals of neurology.

[7]  W. Müller,et al.  Picrotoxin- and 4-aminopyridine-induced activity in hilar neurons in the guinea pig hippocampal slice. , 1991, Journal of neurophysiology.

[8]  R. Miles,et al.  Perturbed Chloride Homeostasis and GABAergic Signaling in Human Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[9]  J. Jefferys,et al.  Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. , 1995, Physiological reviews.

[10]  S. Schiff,et al.  Interneuron and pyramidal cell interplay during in vitro seizure-like events. , 2006, Journal of neurophysiology.

[11]  D. Spencer,et al.  A selective loss of somatostatin in the hippocampus of patients with temporal lobe epilepsy , 1991, Annals of neurology.

[12]  E. Bertram,et al.  Interneurons in area CA1 stratum radiatum and stratum oriens remain functionally connected to excitatory synaptic input in chronically epileptic animals. , 1997, Journal of neurophysiology.

[13]  R. S. Jones,et al.  Synaptic and intrinsic responses of medical entorhinal cortical cells in normal and magnesium-free medium in vitro. , 1988, Journal of neurophysiology.

[14]  Y. Yaari,et al.  Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. , 1997, Journal of neurophysiology.

[15]  J. Voipio,et al.  Long-Lasting GABA-Mediated Depolarization Evoked by High-Frequency Stimulation in Pyramidal Neurons of Rat Hippocampal Slice Is Attributable to a Network-Driven, Bicarbonate-Dependent K+ Transient , 1997, The Journal of Neuroscience.

[16]  Moshe Kushnir,et al.  The role of gap junctions in seizures , 2000, Brain Research Reviews.

[17]  G. Maccaferri,et al.  Is connexin36 critical for GABAergic hypersynchronization in the hippocampus? , 2011, The Journal of physiology.

[18]  M. Curtis,et al.  The In Vitro Isolated Guinea Pig Brain in the Study of Ictogenesis , 2017 .

[19]  Wilkie A. Wilson,et al.  Magnesium-free medium activates seizure-like events in the rat hippocampal slice , 1986, Brain Research.

[20]  K. Kaila,et al.  Ionic mechanisms of spontaneous GABAergic events in rat hippocampal slices exposed to 4-aminopyridine. , 1997, Journal of neurophysiology.

[21]  O. P. Ottersen,et al.  Ultrastructure and immunocytochemical distribution of GABA in layer III of the rat medial entorhinal cortex following aminooxyacetic acid-induced seizures , 1999, Experimental Brain Research.

[22]  Edward O. Mann,et al.  Role of GABAergic inhibition in hippocampal network oscillations , 2007, Trends in Neurosciences.

[23]  J. Hablitz,et al.  Picrotoxin-induced epileptiform activity in hippocampus: role of endogenous versus synaptic factors. , 1984, Journal of neurophysiology.

[24]  Tomoki Fukai,et al.  Prototypic Seizure Activity Driven by Mature Hippocampal Fast-Spiking Interneurons , 2010, The Journal of Neuroscience.

[25]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[27]  I. Aradi,et al.  Propagation of postsynaptic currents and potentials via gap junctions in GABAergic networks of the rat hippocampus , 2007, The Journal of physiology.

[28]  Tero Viitanen,et al.  The K+–Cl− cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus , 2010, The Journal of physiology.

[29]  U. Heinemann,et al.  Methodological standards for in vitro models of epilepsy and epileptic seizures. A TASK1‐WG4 report of the AES/ILAE Translational Task Force of the ILAE , 2017, Epilepsia.

[30]  F. Dudek,et al.  Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. , 1982, Science.

[31]  Mario Cammarota,et al.  Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy , 2013, The Journal of physiology.

[32]  Joshua A. Dian,et al.  Brief activation of GABAergic interneurons initiates the transition to ictal events through post-inhibitory rebound excitation , 2018, Neurobiology of Disease.

[33]  P. Carlen,et al.  Characterizing the persistent CA3 interneuronal spiking activity in elevated extracellular potassium in the young rat hippocampus , 2010, Brain Research.

[34]  I. Módy,et al.  Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. , 1987, Journal of neurophysiology.

[35]  M. Avoli,et al.  GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity , 2011, Progress in Neurobiology.

[36]  W. Löscher,et al.  Functional, metabolic, and synaptic changes after seizures as potential targets for antiepileptic therapy , 2010, Epilepsy & Behavior.

[37]  J. Jefferys,et al.  Low‐calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. , 1984, The Journal of physiology.

[38]  M. de Curtis,et al.  Changes in action potential features during focal seizure discharges in the entorhinal cortex of the in vitro isolated guinea pig brain. , 2011, Journal of neurophysiology.

[39]  J. Gotman,et al.  Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy. , 2016, Journal of neurophysiology.

[40]  M. Curtis,et al.  Interictal spikes in focal epileptogenesis , 2001, Progress in Neurobiology.

[41]  E. Halgren,et al.  High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research , 2012, Progress in Neurobiology.

[42]  T. Babb,et al.  Quantitative Comparison of Cell Loss and Thiopental‐Induced EEG Changes in Human Epileptic Hippocampus , 1989, Epilepsia.

[43]  Mark O. Cunningham,et al.  Human brain slices for epilepsy research: Pitfalls, solutions and future challenges , 2016, Journal of Neuroscience Methods.

[44]  Y. Ben-Ari,et al.  Dual Role of GABA in the Neonatal Rat Hippocampus , 1999, Developmental Neuroscience.

[45]  M. Avoli,et al.  Interneuron activity leads to initiation of low‐voltage fast‐onset seizures , 2015, Annals of neurology.

[46]  A Lücke,et al.  Synchronous GABA-Mediated Potentials and Epileptiform Discharges in the Rat Limbic System In Vitro , 1996, The Journal of Neuroscience.

[47]  Fabrice Wendling,et al.  Update on the mechanisms and roles of high‐frequency oscillations in seizures and epileptic disorders , 2017, Epilepsia.

[48]  M. Avoli,et al.  Synchronous GABAA‐receptor‐dependent potentials in limbic areas of the in‐vitro isolated adult guinea pig brain , 2009, The European journal of neuroscience.

[49]  M. de Curtis,et al.  Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro , 2008, Annals of neurology.

[50]  T. Babb,et al.  Inhibition in synchronously firing human hippocampal neurons , 1989, Epilepsy Research.

[51]  M. de Curtis,et al.  Propagation Dynamics of Epileptiform Activity Acutely Induced by Bicuculline in the Hippocampal–Parahippocampal Region of the Isolated Guinea Pig Brain , 2005, Epilepsia.

[52]  Massimo Avoli,et al.  Low magnesium epileptogenesis in the rat hippocampal slice: electrophysiological and pharmacological features , 1990, Brain Research.

[53]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[54]  Marco de Curtis,et al.  The in vitro isolated whole guinea pig brain as a model to study epileptiform activity patterns , 2016, Journal of Neuroscience Methods.

[55]  M. Kramer,et al.  Pyramidal cells accumulate chloride at seizure onset , 2012, Neurobiology of Disease.

[56]  F. Dudek,et al.  Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate‐treated rats , 1997 .

[57]  T. Valiante,et al.  Transition to Seizure: Ictal Discharge Is Preceded by Exhausted Presynaptic GABA Release in the Hippocampal CA3 Region , 2012, The Journal of Neuroscience.

[58]  Kaspar Anton Schindler,et al.  Synchronization and desynchronization in epilepsy: controversies and hypotheses , 2012, The Journal of physiology.

[59]  A Konnerth,et al.  Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. , 1986, Journal of neurophysiology.

[60]  M. Avoli,et al.  Physiology and pharmacology of epileptiform activity induced by 4-aminopyridine in rat hippocampal slices. , 1991, Journal of neurophysiology.

[61]  J. Velazquez,et al.  Synchronization of GABAergic interneuronal networks during seizure‐like activity in the rat horizontal hippocampal slice , 1999, The European journal of neuroscience.

[62]  S. Taverna,et al.  Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex. , 2015, Journal of neurophysiology.

[63]  Y. Isomura,et al.  Excitatory gaba input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells , 2003, Neuroscience.

[64]  M. Curtis,et al.  Enhanced thalamo‐hippocampal synchronization during focal limbic seizures , 2018, Epilepsia.

[65]  R. S. Sloviter,et al.  Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. , 1987, Science.

[66]  Mohammed Yeasin,et al.  Low‐voltage fast seizures in humans begin with increased interneuron firing , 2018, Annals of neurology.

[67]  O. Paulsen,et al.  Distinct properties of carbachol- and DHPG-induced network oscillations in hippocampal slices , 2004, Neuropharmacology.

[68]  B. Devaux,et al.  Effects of gap junction blockers on human neocortical synchronization , 2006, Neurobiology of Disease.

[69]  Kevin J. Staley,et al.  Interictal spikes, seizures and ictal cell death are not necessary for post-traumatic epileptogenesis in vitro , 2012, Neurobiology of Disease.

[70]  H. Goodkin,et al.  How do we use in vitro models to understand epileptiform and ictal activity? A report of the TASK1‐WG4 group of the ILAE/AES Joint Translational Task Force , 2018, Epilepsia open.

[71]  Kristopher T Kahle,et al.  The GABA Excitatory/Inhibitory Shift in Brain Maturation and Neurological Disorders , 2012, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[72]  M. Avoli,et al.  Participation of GABAA-mediated inhibition in ictallike discharges in the rat entorhinal cortex. , 1998, Journal of neurophysiology.

[73]  R. Miles,et al.  Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy , 2011, Nature Neuroscience.

[74]  P. Buckmaster,et al.  Hyperexcitability, Interneurons, and Loss of GABAergic Synapses in Entorhinal Cortex in a Model of Temporal Lobe Epilepsy , 2006, The Journal of Neuroscience.

[75]  M. Avoli,et al.  Activation of specific neuronal networks leads to different seizure onset types , 2016, Annals of neurology.

[76]  M. Avoli,et al.  Hypersynchronous ictal onset in the perirhinal cortex results from dynamic weakening in inhibition , 2016, Neurobiology of Disease.

[77]  E J Speckmann,et al.  Spontaneous sharp waves in human neocortical slices excised from epileptic patients. , 1998, Brain : a journal of neurology.

[78]  S. Moshé,et al.  How do seizures stop? , 2008, Epilepsia.

[79]  X. Leinekugel,et al.  A Novel In Vitro Preparation: the Intact Hippocampal Formation , 1997, Neuron.

[80]  Kaspar Anton Schindler,et al.  Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. , 2006, Brain : a journal of neurology.

[81]  I. Scheffer,et al.  Epilepsy , 2018, Nature Reviews Disease Primers.

[82]  T. Freund,et al.  The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro. , 2009, Brain : a journal of neurology.

[83]  A. Sik,et al.  Transition to seizures in the isolated immature mouse hippocampus: a switch from dominant phasic inhibition to dominant phasic excitation , 2008, The Journal of physiology.

[84]  M. Avoli GABA‐Mediated Synchronous Potentials and Seizure Generation , 1996, Epilepsia.

[85]  R A Wennberg,et al.  Model of frequent, recurrent, and spontaneous seizures in the intact mouse hippocampus , 2004, Hippocampus.

[86]  K. Staley,et al.  Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors , 1995, Science.

[87]  John Gordon Ralph Jefferys Basic mechanisms of focal epilepsies , 1990, Experimental physiology.

[88]  Donatella Mattia,et al.  Synchronization of rat hippocampal neurons in the absence of excitatory amino acid-mediated transmission , 1996, Brain Research.

[89]  R. Schwarcz,et al.  Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  Gian Luca Breschi,et al.  Synchronous Inhibitory Potentials Precede Seizure-Like Events in Acute Models of Focal Limbic Seizures , 2015, The Journal of Neuroscience.

[91]  Y. Isomura,et al.  Comparable GABAergic mechanisms of hippocampal seizurelike activity in posttetanic and low-Mg2+ conditions. , 2006, Journal of neurophysiology.

[92]  G. Kreutzberg,et al.  Changes of acetylcholinesterase molecular forms in regenerating motor neurons , 1986, Neuroscience.

[93]  M. Avoli,et al.  4-aminopyridine-induced epileptiform activity and a GABA-mediated long- lasting depolarization in the rat hippocampus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[94]  B. L. Bardakjian,et al.  Bidirectional multisite seizure propagation in the intact isolated hippocampus: The multifocality of the seizure “focus” , 2006, Neurobiology of Disease.

[95]  M. de Curtis,et al.  Network dynamics during the progression of seizure-like events in the hippocampal-parahippocampal regions. , 2014, Cerebral cortex.

[96]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[97]  Dominique L. Pritchett,et al.  For things needing your attention: the role of neocortical gamma in sensory perception , 2015, Current Opinion in Neurobiology.

[98]  J. Jefferys,et al.  Ictal Epileptiform Activity Is Facilitated by Hippocampal GABAA Receptor-Mediated Oscillations , 2000, The Journal of Neuroscience.

[99]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[100]  Jason C. Wester,et al.  Hippocampal GABAergic Inhibitory Interneurons. , 2017, Physiological reviews.

[101]  R. Yuste,et al.  Evidence of an inhibitory restraint of seizure activity in humans , 2012, Nature Communications.

[102]  Roustem Khazipov,et al.  Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus , 2004, The European journal of neuroscience.

[103]  J. Barker,et al.  Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurones , 1977, Nature.

[104]  Y. Ben-Ari,et al.  Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Charles L. Wilson,et al.  Local Generation of Fast Ripples in Epileptic Brain , 2002, The Journal of Neuroscience.

[106]  Joseph V Raimondo,et al.  Excitatory Effects of Parvalbumin-Expressing Interneurons Maintain Hippocampal Epileptiform Activity via Synchronous Afterdischarges , 2014, The Journal of Neuroscience.

[107]  U. Heinemann,et al.  Ionic changes and alterations in the size of the extracellular space during epileptic activity. , 1986, Advances in neurology.

[108]  Oscar C González,et al.  Role of KCC2-dependent potassium efflux in 4-Aminopyridine-induced Epileptiform synchronization , 2017, Neurobiology of Disease.

[109]  G. Carmignoto,et al.  Parvalbumin-Positive Inhibitory Interneurons Oppose Propagation But Favor Generation of Focal Epileptiform Activity , 2015, The Journal of Neuroscience.

[110]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[111]  J. Lacaille,et al.  Cell-specific alterations in synaptic properties of hippocampal CA1 interneurons after kainate treatment. , 1998, Journal of neurophysiology.

[112]  Steven J Schiff,et al.  Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events. , 2013, Journal of neurophysiology.

[113]  Tony A. Fields,et al.  Ictal onset patterns of local field potentials, high frequency oscillations, and unit activity in human mesial temporal lobe epilepsy , 2016, Epilepsia.

[114]  M. Avoli,et al.  GABAergic networks jump‐start focal seizures , 2016, Epilepsia.

[115]  Giorgio Carmignoto,et al.  Interneuronal Network Activity at the Onset of Seizure-Like Events in Entorhinal Cortex Slices , 2017, The Journal of Neuroscience.

[116]  L. Sundstrom,et al.  Somatostatin- and neuropeptide Y-synthesizing neurones in the fascia dentata of humans with temporal lobe epilepsy. , 2001, Brain : a journal of neurology.

[117]  T. Freund,et al.  Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine‐induced seizures , 2003, The Journal of comparative neurology.

[118]  R K Wong,et al.  Cellular basis of neuronal synchrony in epilepsy. , 1986, Advances in neurology.

[119]  W. W. Anderson,et al.  NMDA antagonists differentiate epileptogenesis from seizure expression in an in vitro model. , 1989, Science.

[120]  R. Traub,et al.  Synaptic and nonsynaptic contributions to giant ipsps and ectopic spikes induced by 4-aminopyridine in the hippocampus in vitro. , 2001, Journal of neurophysiology.

[121]  F. Wendling,et al.  Dynamic changes of depolarizing GABA in a computational model of epileptogenic brain: Insight for Dravet syndrome , 2016, Experimental Neurology.

[122]  M. Avoli,et al.  KCC2, epileptiform synchronization, and epileptic disorders , 2017, Progress in Neurobiology.

[123]  Bálint Lasztóczi,et al.  Synchronization of GABAergic inputs to CA3 pyramidal cells precedes seizure-like event onset in juvenile rat hippocampal slices. , 2009, Journal of neurophysiology.

[124]  Y. Isomura,et al.  Synaptic interactions between pyramidal cells and interneurone subtypes during seizure‐like activity in the rat hippocampus , 2004, The Journal of physiology.

[125]  Marom Bikson,et al.  Depolarization block of neurons during maintenance of electrographic seizures. , 2003, Journal of neurophysiology.

[126]  J. Palva,et al.  Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus. , 2000, Journal of neurophysiology.