Overview of Flow Visualization

Flow visualization is an important topic in scientific visualization and has been the subject of active research for many years. Typically, data originates from numerical simulations, such as those of computational fluid dynamics, and needs to be analyzed by means of visualization to gain an understanding of the flow. With the rapid increase of computational power for simulations, the demand for more advanced visualization methods has grown. This chapter presents an overview of important and widely used approaches to flow visualization, along with references to more detailed descriptions in the original scientific publications. Although the list of references covers a large body of research, it is by no means meant to be a comprehensive collection of articles in the field. In all practical applications of flow visualization, the data is given on a manifold of two or three dimensions.

[1]  Werner Purgathofer,et al.  Animating flow fields: rendering of oriented line integral convolution , 1997, Proceedings. Computer Animation '97 (Cat. No.97TB100120).

[2]  David L. Kao,et al.  A New Line Integral Convolution Algorithm for Visualizing Time-Varying Flow Fields , 1998, IEEE Trans. Vis. Comput. Graph..

[3]  Thomas Ertl,et al.  Particle Tracing on Sparse Grids , 1998 .

[4]  Thomas Ertl,et al.  Line Integral Convolution on triangulated surfaces , 1997 .

[5]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[6]  Bernd Hamann,et al.  Construction of vector field hierarchies , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[7]  Vivek Verma,et al.  PLIC: bridging the gap between streamlines and LIC , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[8]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.

[9]  Eduard Gröller,et al.  Real-time techniques for 3D flow visualization , 1998 .

[10]  R. A. Crawfis,et al.  Flow Visualization Techniques for CDF using Volume Rendering , 2000 .

[11]  Robert J. Moorhead,et al.  AUFLIC: An Accelerated Algorithm For Unsteady Flow Line Integral Convolution , 2002, VisSym.

[12]  Jarke J. van Wijk,et al.  Image based flow visualization , 2002, ACM Trans. Graph..

[13]  Hans Hagen,et al.  A topology simplification method for 2D vector fields , 2000 .

[14]  H. Hege,et al.  Fast Line Integral Convolution for Arbitrary Surfaces in 3D , 1997, VisMath.

[15]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000 .

[16]  H.-C. Hege,et al.  Interactive visualization of 3D-vector fields using illuminated stream lines , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[17]  William E. Lorensen,et al.  The stream polygon-a technique for 3D vector field visualization , 1991, Proceeding Visualization '91.

[18]  Robert van Liere,et al.  Multi-level topology for flow visualization , 2000, Comput. Graph..

[19]  Nelson L. Max,et al.  Visualizing 3D velocity fields near contour surfaces , 1994, Proceedings Visualization '94.

[20]  Gordon Erlebacher,et al.  Hardware-Accelerated Lagrangian-Eulerian Texture Advection for 2D Flow Visualization , 2002 .

[21]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[22]  Vivek Verma,et al.  A flow-guided streamline seeding strategy , 2000 .

[23]  Nelson L. Max,et al.  Flow volumes for interactive vector field visualization , 1993, Proceedings Visualization '93.

[24]  Andrea Sanna,et al.  A survey on visualization of vector fields by texture-based methods , 2000 .

[25]  R. Victor Klassen,et al.  Shadowed hedgehogs: a technique for visualizing 2D slices of 3D vector fields , 1991, Proceeding Visualization '91.

[26]  Thomas Ertl,et al.  Efficient and Reliable Integration Methods for Particle Tracing in Unsteady Flows on Discrete Meshes , 1997, Visualization in Scientific Computing.

[27]  Xiaoyang Mao,et al.  Line Integral Convolution for 3D Surfaces , 1997, Visualization in Scientific Computing.

[28]  Frits H. Post,et al.  Geometric Methods for Vortex Extraction , 1999 .

[29]  Frits H. Post,et al.  Detection, quantification, and tracking of vortices using streamline geometry , 2000, Comput. Graph..

[30]  Victoria Interrante,et al.  Illustrating surface shape in volume data via principal direction-driven 3D line integral convolution , 1997, SIGGRAPH.

[31]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[32]  Kwan-Liu Ma,et al.  Visualizing vector fields using line integral convolution and dye advection , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[33]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[34]  Gordon Erlebacher,et al.  Hardware-accelerated texture advection for unsteady flow visualization , 2000 .

[35]  Hans Hagen,et al.  Streamball techniques for flow visualization , 1994, Proceedings Visualization '94.

[36]  Victoria Interrante,et al.  Visualizing 3D Flow , 1998, IEEE Computer Graphics and Applications.

[37]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[38]  Jeffrey P. M. Hultquist,et al.  Interactive numerical flow visualization using stream surfaces , 1996 .

[39]  David S. Ebert,et al.  Volume rendering methods for computational fluid dynamics visualization , 1994, Proceedings Visualization '94.

[40]  Eduard Gröller,et al.  Fast oriented line integral convolution for vector field visualization via the Internet , 1997 .

[41]  Ronald Peikert,et al.  Flow visualization for turbomachinery design , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[42]  Robert van Liere,et al.  Divide and Conquer Spot Noise , 1997 .

[43]  W. D. Leeuw,et al.  Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999 .

[44]  Samuel P. Uselton,et al.  Volume Rendering for Computational Fluid Dynamics: Initial Results , 1991 .

[45]  Denis Friboulet,et al.  2D Vector Field Visualization Using Furlike Texture , 1999 .

[46]  Gerik Scheuermann,et al.  Detection and Visualization of Closed Streamlines in Planar Flows , 2001, IEEE Trans. Vis. Comput. Graph..

[47]  David L. Kao,et al.  Enhanced line integral convolution with flow feature detection , 1997, Electronic Imaging.

[48]  Nelson L. Max,et al.  Unsteady flow volumes , 1995, Proceedings Visualization '95.

[49]  Gregory M. Nielson,et al.  Tools for Computing Tangent Curves for Linearly Varying Vector Fields over Tetrahedral Domains , 1999, IEEE Trans. Vis. Comput. Graph..

[50]  Willem C. de Leeuw,et al.  Visualization of turbulent flow by spot noise , 1996 .

[51]  Helwig Löffelmann,et al.  Enhancing the Visualization of Characteristic Structures in Dynamical Systems , 1998 .

[52]  Lambertus Hesselink,et al.  Feature comparisons of vector fields using earth mover's distance , 1998 .

[53]  David C. Banks,et al.  Vortex tubes in turbulent flows: identification, representation, reconstruction , 1994, Proceedings Visualization '94.

[54]  Robert Haimes,et al.  Automatic Vortex Core Detection , 1998, IEEE Computer Graphics and Applications.

[55]  Wilfrid Lefer,et al.  Unsteady Flow Visualization by Animating Evenly‐Spaced Streamlines , 2000, Comput. Graph. Forum.

[56]  Steve Bryson,et al.  The virtual wind tunnel , 1992, IEEE Computer Graphics and Applications.

[57]  David C. Banks,et al.  Multi-frequency noise for LIC , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[58]  Kwan-Liu Ma,et al.  Efficient Streamline, Streamribbon, and Streamtube Constructions on Unstructured Grids , 1996, IEEE Trans. Vis. Comput. Graph..

[59]  Nelson Max,et al.  Flow visualization using moving textures , 1995 .

[60]  David A. Lane,et al.  Interactive Time-Dependent Particle Tracing Using Tetrahedral Decomposition , 1996, IEEE Trans. Vis. Comput. Graph..

[61]  Alexandru Telea,et al.  Simplified representation of vector fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[62]  Hans-Peter Seidel,et al.  Applications of pixel textures in visualization and realistic image synthesis , 1999, SI3D.

[63]  John Clyne,et al.  Interactive Direct Volume Rendering of Time-Varying Data , 1999 .

[64]  David Kenwright Automatic detection of open and closed separation and attachment lines , 1998 .

[65]  Hans Hagen,et al.  Topology tracking for the visualization of time-dependent two-dimensional flows , 2002, Comput. Graph..

[66]  Wilfrid Lefer,et al.  The motion map: efficient computation of steady flow animations , 1997 .

[67]  Hans Hagen,et al.  Visualization of higher order singularities in vector fields , 1997 .

[68]  Jarke J. van Wijk Implicit Stream Surfaces , 1993, IEEE Visualization.

[69]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[70]  Robert S. Laramee,et al.  The State of the Art in Flow Visualization: Dense and Texture‐Based Techniques , 2004, Comput. Graph. Forum.

[71]  Hans Hagen,et al.  Visualizing planar vector fields with normal component using line integral convolution , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[72]  Hans-Georg Pagendarm,et al.  Selective visualization of vortices in hydrodynamic flows , 1998 .

[73]  Ronald Peikert,et al.  Vortex Tracking in Scale-Space , 2002, VisSym.

[74]  Peter Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, SIGGRAPH 1990.

[75]  Pheng-Ann Heng,et al.  Principal stream surfaces , 1997 .

[76]  David C. Banks,et al.  Illumination in diverse codimensions , 1994, SIGGRAPH.

[77]  Martin Rumpf,et al.  Visualization of Time-Dependent Velocity Fields by Texture Transport , 1998 .

[78]  Lisa K. Forssell,et al.  Using Line Integral Convolution for Flow Visualization: Curvilinear Grids, Variable-Speed Animation, and Unsteady Flows , 1995, IEEE Trans. Vis. Comput. Graph..

[79]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[80]  Lambertus Hesselink,et al.  Feature comparisons of 3-D vector fields using earth mover's distance , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[81]  van Robert Liere,et al.  Comparing LIC and spot noise , 1998 .

[82]  James F. O'Brien,et al.  Case study: Visualizing ocean flow vertical motions using Lagrangian-Eulerian time surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[83]  Jarke J. van Wijk,et al.  Enhanced Spot Noise for Vector Field Visualization , 1995, IEEE Visualization.

[84]  Alex Pang,et al.  3D Flow Visualization Using Texture Advection , 2001 .

[85]  Pak Chung Wong,et al.  Vector fields simplification — a case study of visualizing climate modeling and simulation data sets , 2000 .

[86]  Hans-Christian Hege,et al.  Fast LIC with Piecewise Polynomial Filter Kernels , 1997, VisMath.

[87]  Raghu Machiraju,et al.  A Novel Approach To Vortex Core Region Detection , 2002, VisSym.

[88]  Andrea Sanna,et al.  Visualizing Unsteady Flows by Adaptive Streaklines , 2000, WSCG.

[89]  Wilfrid Lefer,et al.  Creating Evenly-Spaced Streamlines of Arbitrary Density , 1997, Visualization in Scientific Computing.

[90]  Thomas Ertl,et al.  Interactive visualization of fluid dynamics simulations in locally refined cartesian grids , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[91]  Hans-Christian Hege,et al.  Fast and resolution independent line integral convolution , 1995, SIGGRAPH.

[92]  Xiaoyang Mao,et al.  Multi-Granularity Noise for Curvilinear Grid LIC , 1998, Graphics Interface.

[93]  Kwan-Liu Ma,et al.  3D shock wave visualization on unstructured grids , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[94]  Alex T. Pang,et al.  UFLOW: visualizing uncertainty in fluid flow , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[95]  Rüdiger Westermann,et al.  Topology-Preserving Smoothing of Vector Fields , 2001, IEEE Trans. Vis. Comput. Graph..

[96]  Brian Cabral,et al.  Highly Parallel Vector Visualization Using Line Integral Convolution , 1995, PPSC.

[97]  Werner Purgathofer,et al.  Stream arrows: enhancing the use of stream surfaces for the visualization of dynamical systems , 1997, The Visual Computer.

[98]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[99]  Peter Hastreiter,et al.  Interactive exploration of volume line integral convolution based on 3D-texture mapping , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[100]  Hans Hagen,et al.  Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..

[101]  Wolfgang Straßer,et al.  Interactive Visualization of Volumetric Vector Fields Using Texture Based Particles , 2002, WSCG.

[102]  Han-Wei Shen,et al.  Hardware Accelerated Interactive Vector Field Visualization: A level of detail approach , 2002, Comput. Graph. Forum.

[103]  Kenji Ono,et al.  Visualization of Thermal Flows in an Automotive Cabin with Volume Rendering Method , 2001, VisSym.

[104]  Xiaoyang Mao,et al.  Image-guided streamline placement on curvilinear grid surfaces , 1998 .

[105]  Jarke J. van Wijk,et al.  A Probe for Local Flow Field Visualization , 1993, IEEE Visualization.

[106]  Thomas Ertl,et al.  New Approaches for Particle Tracing on Sparse Grids , 1999 .

[107]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[108]  Jarke J. van Wijk Flow visualization with surface particles , 1993, IEEE Computer Graphics and Applications.

[109]  Don Dovey Vector plots for irregular grids , 1995, Proceedings Visualization '95.

[110]  Thomas Frühauf,et al.  Raycasting vector fields , 1996, VIS '96.

[111]  Gordon Erlebacher,et al.  Lagrangian-Eulerian advection for unsteady flow visualization , 2001, Proceedings Visualization, 2001. VIS '01..

[112]  Ronald Peikert,et al.  A higher-order method for finding vortex core lines , 1998 .

[113]  Martin Rumpf,et al.  Transport and anisotropic diffusion in time-dependent flow visualization , 2001, Proceedings Visualization, 2001. VIS '01..

[114]  Martin Rumpf,et al.  Anisotropic Diffusion in Vector Field Visualization on Euclidean Domains and Surfaces , 2000, IEEE Trans. Vis. Comput. Graph..

[115]  Harald Garcke,et al.  A continuous clustering method for vector fields , 2000 .

[116]  Harald Garcke,et al.  A Phase Field Model for Continuous Clustering on Vector Fields , 2001, IEEE Trans. Vis. Comput. Graph..

[117]  Hans-Georg Pagendarm,et al.  Visual Simulation of Experimental Oil-Flow Visualization by Spot Noise Images from Numerical Flow Simulation , 1995, Visualization in Scientific Computing.

[118]  Wilfrid Lefer,et al.  Multiresolution Flow Visualization , 2001, WSCG.

[119]  Nelson Max,et al.  Texture splats for 3D scalar and vector field visualization , 1993, Proceedings Visualization '93.

[120]  Thomas Ertl,et al.  Hardware-Accelerated Visualization of Time-Varying 2D and 3D Vector Fields by Texture Advection via Programmable Per-Pixel Operations , 2001, VMV.

[121]  Hans-Christian Hege,et al.  Parallel Line Integral Convolution , 1997, Parallel Comput..

[122]  Victoria Interrante,et al.  Strategies for effectively visualizing 3D flow with volume LIC , 1997 .

[123]  David Banks,et al.  Image-guided streamline placement , 1996, SIGGRAPH.

[124]  Thomas Glau Exploring Instationary Fluid Flows by Interactive Volume Movies , 1999 .

[125]  Nelson L. Max,et al.  Visualizing wind velocities by advecting cloud textures , 1992, Proceedings Visualization '92.

[126]  Suresh K. Lodha,et al.  Topology preserving compression of 2D vector fields , 2000 .

[127]  Raghu Machiraju,et al.  Geometric verification of swirling features in flow fields , 2002, IEEE Visualization, 2002. VIS 2002..

[128]  Hans Hagen,et al.  C1-interpolation for vector field topology visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[129]  Andreas Sundquist Dynamic Line Integral Convolution for Visualizing Streamline Evolution , 2003, IEEE Trans. Vis. Comput. Graph..