Robust optimization for resource-constrained project scheduling with uncertain activity durations

The purpose of this paper is to propose models for project scheduling when there is considerable uncertainty in the activity durations, to the extent that the decision maker cannot with confidence associate probabilities with the possible outcomes of a decision. Our modeling techniques stem from robust discrete optimization, which is a theoretical framework that enables the decision maker to produce solutions that will have a reasonably good objective value under any likely input data scenario. We develop and implement a scenario-relaxation algorithm and a scenario-relaxation-based heuristic. The first algorithm produces optimal solutions but requires excessive running times even for medium-sized instances; the second algorithm produces high-quality solutions for medium-sized instances and outperforms two benchmark heuristics.

[1]  D. Malcolm,et al.  Application of a Technique for Research and Development Program Evaluation , 1959 .

[2]  Roel Leus Resource allocation by means of project networks: Dominance results , 2011, Networks.

[3]  Egon Balas,et al.  PROJECT SCHEDULING WITH RESOURCE CONSTRAINTS. , 1968 .

[4]  Marc Uetz,et al.  On the generation of circuits and minimal forbidden sets , 2005, Math. Program..

[5]  Roel Leus,et al.  New competitive results for the stochastic resource-constrained project scheduling problem: exploring the benefits of pre-processing , 2011, J. Sched..

[6]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[7]  Rolf H. Möhring,et al.  A Computational Study on Bounding the Makespan Distribution in Stochastic Project Networks , 2001, Ann. Oper. Res..

[8]  J. D. Wiest,et al.  A management guide to PERT/CPM: With GERT/PDM/DCPM and other networks , 1977 .

[9]  Rainer Kolisch Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation , 1994 .

[10]  Igor Averbakh Computing and minimizing the relative regret in combinatorial optimization with interval data , 2005, Discret. Optim..

[11]  Roel Leus,et al.  Resource allocation by means of project networks: Complexity results , 2011, Networks.

[12]  Robert J. Vanderbei,et al.  Robust Optimization of Large-Scale Systems , 1995, Oper. Res..

[13]  S. French Decision Theory: An Introduction to the Mathematics of Rationality , 1986 .

[14]  Roel Leus,et al.  Resource‐Constrained Project Scheduling for Timely Project Completion with Stochastic Activity Durations , 2007 .

[15]  Professor Dr. Klaus Neumann,et al.  Project Scheduling with Time Windows and Scarce Resources , 2003, Springer Berlin Heidelberg.

[16]  John Bowers,et al.  Criticality in Resource Constrained Networks , 1995 .

[17]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[18]  Panagiotis Kouvelis,et al.  Robust scheduling to hedge against processing time uncertainty in single-stage production , 1995 .

[19]  M. Realff,et al.  Min-Max Regret Robust Optimization Approach on Interval Data Uncertainty , 2008 .

[20]  Vidyadhar G. Kulkarni,et al.  A classified bibliography of research on stochastic PERT networks: 1966-1987 , 1989 .

[21]  K. McConway,et al.  Decision Theory: An Introduction to the Mathematics of Rationality , 1986 .

[22]  I-Hsuan Hong,et al.  Scenario relaxation algorithm for finite scenario-based min-max regret and min-max relative regret robust optimization , 2008, Comput. Oper. Res..

[23]  Vidyadhar G. Kulkarni,et al.  Markov and Markov-Regenerative pert Networks , 1986, Oper. Res..

[24]  Rema Padman,et al.  An integrated survey of deterministic project scheduling , 2001 .

[25]  G. NAEGLER,et al.  Chapter 8 – RESOURCE ALLOCATION IN A NETWORK MODEL - THE LEINET SYSTEM , 1989 .

[26]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[27]  D. J. White,et al.  Decision Theory , 2018, Behavioral Finance for Private Banking.

[28]  Igor Averbakh,et al.  Complexity of minimizing the total flow time with interval data and minmax regret criterion , 2006, Discret. Appl. Math..

[29]  Erik Demeulemeester,et al.  A branch-and-bound procedure for the multiple resource-constrained project scheduling problem , 1992 .

[30]  J. Rosenhead,et al.  Robustness and Optimality as Criteria for Strategic Decisions , 1972 .

[31]  Franz Josef Radermacher,et al.  Preselective strategies for the optimization of stochastic project networks under resource constraints , 1983, Networks.

[32]  Leonard J. Savage,et al.  The Theory of Statistical Decision , 1951 .

[33]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[34]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[35]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[36]  Salah E. Elmaghraby,et al.  Activity networks: Project planning and control by network models , 1977 .

[37]  Christian Artigues,et al.  A polynomial activity insertion algorithm in a multi-resource schedule with cumulative constraints and multiple modes , 2000, Eur. J. Oper. Res..

[38]  Adam Kasperski,et al.  Discrete Optimization with Interval Data - Minmax Regret and Fuzzy Approach , 2008, Studies in Fuzziness and Soft Computing.

[39]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[40]  Erik Demeulemeester,et al.  Project scheduling : a research handbook , 2002 .

[41]  Abraham Wald,et al.  Statistical Decision Functions , 1951 .

[42]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[43]  George L. Vairaktarakis,et al.  Robust scheduling of a two-machine flow shop with uncertain processing times , 2000 .

[44]  Christian Artigues,et al.  Insertion techniques for static and dynamic resource-constrained project scheduling , 2003, Eur. J. Oper. Res..

[45]  Frederik Stork,et al.  Stochastic resource-constrained project scheduling , 2001 .

[46]  Roberto Montemanni,et al.  A Mixed Integer Programming Formulation for the Total Flow Time Single Machine Robust Scheduling Problem with Interval Data , 2007, J. Math. Model. Algorithms.

[47]  E. Beale,et al.  Applications of Mathematical Programming Techniques. , 1971 .

[48]  Erik Demeulemeester,et al.  RanGen: A Random Network Generator for Activity-on-the-Node Networks , 2003, J. Sched..

[49]  Daniel Bienstock,et al.  Computing robust basestock levels , 2008, Discret. Optim..

[50]  Igor Averbakh Minmax regret solutions for minimax optimization problems with uncertainty , 2000, Oper. Res. Lett..

[51]  Sophie Demassey Mathematical Programming Formulations and Lower Bounds , 2010 .

[52]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[53]  Christoph H. Loch,et al.  Managing the Unknown: A New Approach to Managing High Uncertainty and Risk in Projects , 2006 .

[54]  Igor Averbakh,et al.  Interval data minmax regret network optimization problems , 2004, Discret. Appl. Math..

[55]  Yury V. Nikulin,et al.  Robustness in combinatorial optimization and scheduling theory: An extended annotated bibliography , 2004 .

[56]  F. Glover,et al.  Fundamentals of Scatter Search and Path Relinking , 2000 .

[57]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[58]  Christian Artigues,et al.  Resource-Constrained Project Scheduling , 2008 .

[59]  Willy Herroelen,et al.  Stability and resource allocation in project planning , 2004 .