Numerical computation of the genus of an irreducible curve within an algebraic set

Abstract The common zero locus of a set of multivariate polynomials (with complex coefficients) determines an algebraic set. Any algebraic set can be decomposed into a union of irreducible components. Given a one-dimensional irreducible component, i.e. a curve, it is useful to understand its invariants. The most important invariants of a curve are the degree, the arithmetic genus and the geometric genus (where the geometric genus denotes the genus of a desingularization of the projective closure of the curve). This article presents a numerical algorithm to compute the geometric genus of any one-dimensional irreducible component of an algebraic set.

[1]  Zhonggang Zeng,et al.  The approximate GCD of inexact polynomials , 2004, ISSAC '04.

[2]  Ferdinand Freudenstein,et al.  Geared Five-Bar Motion: Part 2—Arbitrary Commensurate Gear Ratio , 1963 .

[3]  Jonathan D. Hauenstein,et al.  Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .

[4]  Zhonggang Zeng,et al.  Computing the multiplicity structure in solving polynomial systems , 2005, ISSAC.

[5]  Anton Leykin,et al.  Newton's method with deflation for isolated singularities of polynomial systems , 2006, Theor. Comput. Sci..

[6]  S. Smale,et al.  Complexity of Bezout's theorem IV: probability of success; extensions , 1996 .

[7]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[8]  Zhonggang Zeng,et al.  The approximate GCD of inexact polynomials Part II: a multivariate algorithm , 2004, ISSAC 2004.

[9]  A. Morgan,et al.  A power series method for computing singular solutions to nonlinear analytic systems , 1992 .

[10]  Jonathan D. Hauenstein,et al.  Adaptive Multiprecision Path Tracking , 2008, SIAM J. Numer. Anal..

[11]  Andrew J. Sommese,et al.  Homotopies for Intersecting Solution Components of Polynomial Systems , 2004, SIAM J. Numer. Anal..

[12]  Rick Miranda,et al.  Algebraic Curves and Riemann Surfaces , 1995 .

[13]  Zhonggang Zeng Computing multiple roots of inexact polynomials , 2005, Math. Comput..

[14]  Andrew J. Sommese,et al.  Symmetric Functions Applied to Decomposing Solution Sets of Polynomial Systems , 2002, SIAM J. Numer. Anal..

[15]  S. Smale,et al.  Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .

[16]  A. Morgan,et al.  Computing singular solutions to nonlinear analytic systems , 1990 .

[17]  Chris Peterson,et al.  A numerical-symbolic algorithm for computing the multiplicity of a component of an algebraic set , 2006, J. Complex..

[18]  Andrew J. Sommese,et al.  Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..

[19]  Victor Y. Pan,et al.  Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-finding , 2002, J. Symb. Comput..

[20]  Jan Verschelde,et al.  Using Monodromy to Decompose Solution Sets of Polynomial Systems into Irreducible Components , 2001 .

[21]  L. M. Pardo,et al.  Smale’s 17th problem: Average polynomial time to compute affine and projective solutions , 2008 .

[22]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[23]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[24]  Jonathan D. Hauenstein,et al.  Regeneration homotopies for solving systems of polynomials , 2010, Math. Comput..

[25]  Stephen Smale,et al.  Complexity of Bezout's Theorem V: Polynomial Time , 1994, Theor. Comput. Sci..

[26]  Zhonggang Zeng,et al.  A Rank-Revealing Method with Updating, Downdating, and Applications , 2005, SIAM J. Matrix Anal. Appl..