Integral decomposition of polyhedra and some applications in mixed integer programming

Abstract. This paper addresses the question of decomposing an infinite family of rational polyhedra in an integer fashion. It is shown that there is a finite subset of this family that generates the entire family. Moreover, an integer analogue of Carathéodory's theorem carries over to this general setting. The integer decomposition of a family of polyhedra has some applications in integer and mixed integer programming, including a test set approach to mixed integer programming.